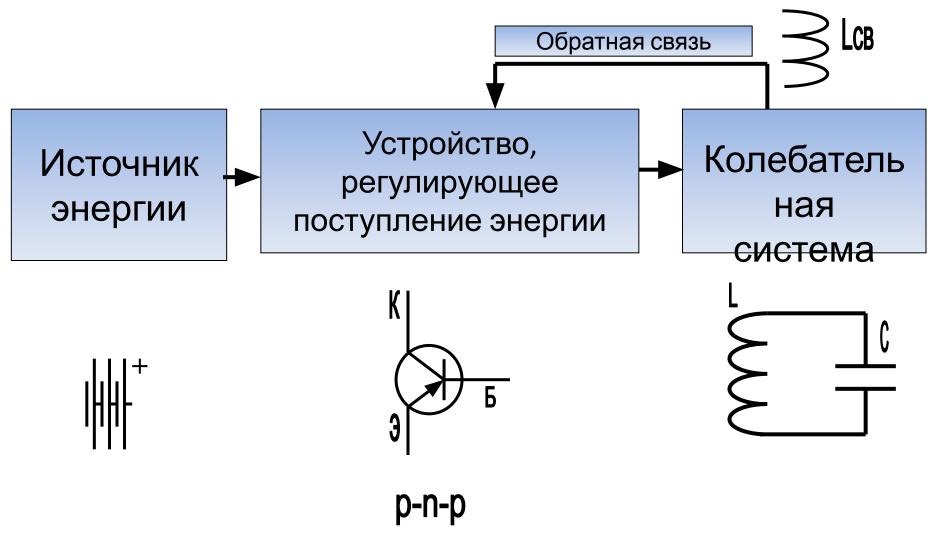
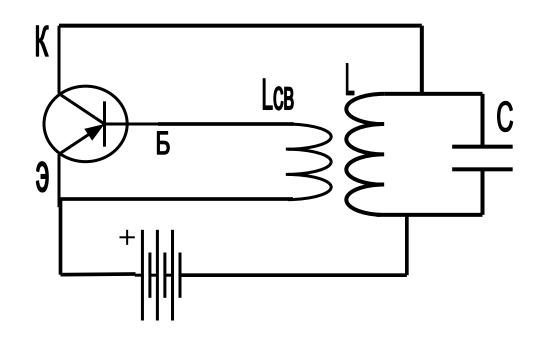

Автоколебания

Условия возбуждения автоколебаний

- а) энергия от источника должна поступать в такт с колебаниями в контуре;
- б) поступающая от источника энергия должна быть равна ее потерям в контуре.


Часы как автоколебательная система.

Аналогия между механическими и электромагнитными


	Элементы автоколебательн ой системы	Механическая автоколебательн ая система (маятниковые часы)	Электромагнитна я автоколебательн ая система (генератор на транзисторе)
1	источник энергии	поднятый груз	батарея гальванических элементов
2	клапан	анкер	транзистор
3	колебательная система	маятник	колебательный контур
4	Обратная связь	через ходовое колесо	индуктивная – через катушки

Генератор высокочастотных электромагнитных колебаний

• Схема автоколебательной системы

Тенератор высокочастотных электромагнитных колебаний

• В момент подключения источника постоянного тока через коллекторную цепь транзистора проходит ток, заряжающий конденсатор колебательного контура. В контуре возникнут свободные электромагнитные колебания. Так как катушка колебательного контура индуктивно связана с катушкой обратной связи, то ее изменяющееся магнитное поле вызовет в катушке обратной связи переменную ЭДС такой же частоты, как и колебания в контуре. Эта ЭДС, будучи приложена к участку база – эмиттер, вызовет пульсацию тока в цепи коллектора. Так как частота этих пульсаций равна частоте электромагнитных колебаний в контуре, то они подзаряжают конденсатор контура и тем самым поддерживают постоянной амплитуду колебаний в контуре.

Характеристики автоколебаний

• Частота автоколебаний равна собственной частоте колебательного контура

$$\omega_0 = \sqrt{\frac{1}{LC}}$$

• Амплитуда силы тока колебаний зависит от напряжения источника $I_{\max} = kU_0$

$$I_{\text{max}} = kU_0$$