Consumer Microcircuits (UK) Ltd are pleased to present - CML Innovations

A presentation focusing on typical metering, telemetry & alarm applications

CML headquarters, Essex UK


CML – Consumer Microcircuits (UK) Ltd 'Производитель полупроводников для

- Штаб-квартира расположена в Essex, England
- Компания основана в 1968
- 'fabless'-компания
- Более 30 лет на телекоммуникационном рынке
- Большой опыт в разработке CMOS микросхем

НИ • Тт

- Три основных направления:
 - Проводные коммуникации
 - Радиосвязь
 - Беспроводная передача данных
- 250 сотрудников по всему миру
- ISO9001:2000
- <u>WWW.cmlmicro.com</u>
 - Документация
 - Рекомендации по применению
 - Анонсы новых изделий

Методы передачи информации

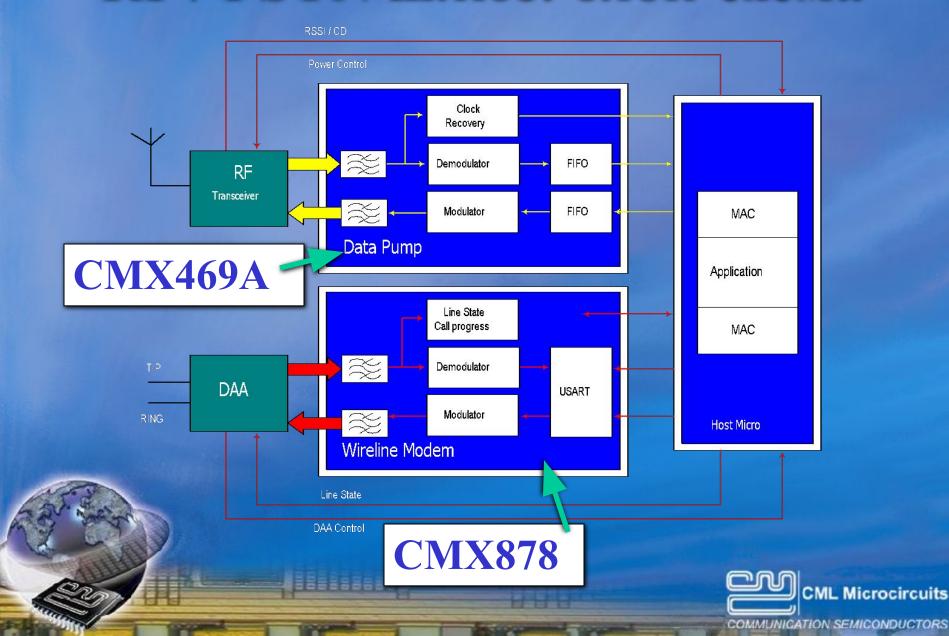
- Существует несколько способов, зависящих от способа связи датчика и головного устройства:
 - Беспроводной:
 - Питание от батарей (вероятно)
 - Требуется радиоприемник и передатчик
 - Через силовую линию:
 - Сложные модуляционные схемы
 - Не до конца освоенная технология
 - Не может работать без линии питания
 - Проводная передача:
 - Требуется узкополосная модуляция
 - Требуется по крайней мере 1 пара проводов

Приложение – RF/PSTN шлюз

Обычно информация хранится локально и передается на RF/PSTN шлюз.

Шлюз посылает данные на клиентский WWW-сервер, где и происходит биллинг, анализ и хранятся архивы. Обратный канал предоставляет «мгновенный» доступ к системе, что позволяет его использовать в случае тревоги.

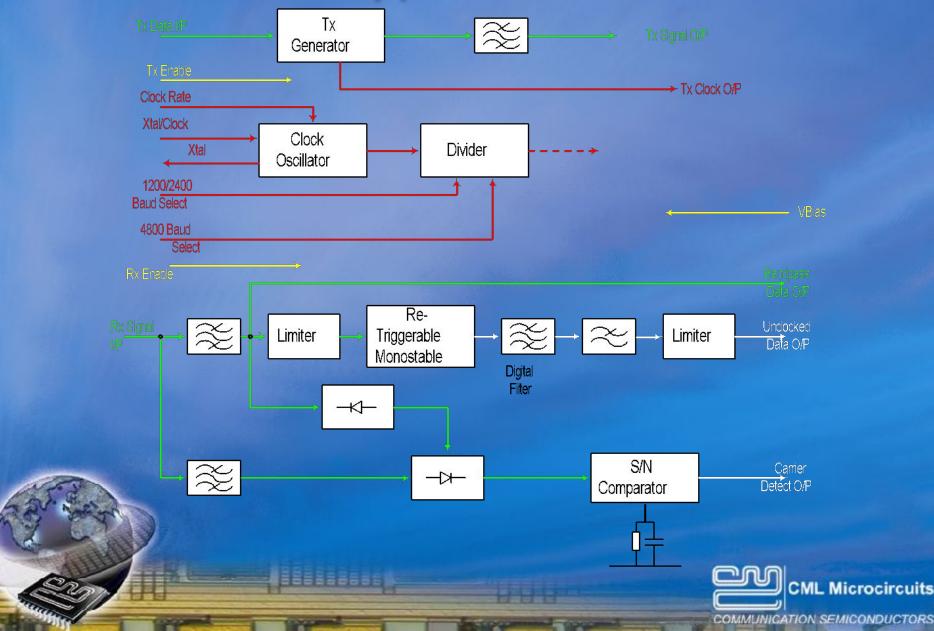
Delivery / Collection


Website on Client System

Особенности шлюза

- Обычно низкоскоростная передача данных
- Нечастая передача данных
- Низкая цена и стоимость поддержки устройства
- Зачастую симплексный канал
- Разработка по принципу «сделал и забыл»
- Стандартно питается от батареи
- Прост в обращении

RF / PSTN шлюз: блок-схема



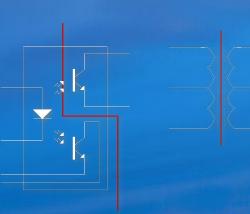
Беспроводная передача данных: анализ

- Зависимость скорости передачи от ширины полосы
 - Скорость передачи ограничена шириной канала, а также шумом.
 - Ширину RF канала специально уменьшают для увеличения спектральной эффективности и увеличения числа пользователей.
- Разделение функций
 - Уменьшенное в целом энергопотребление
 - Управляющий микроконтроллер может находиться в режиме пониженного энергопотребления
 - Специализированные модемы, оптимизированные для уменьшения количества ошибок
- Низкое энергопотребление
 - Многие системы требую наличия датчиков, работающих по принципу «сделал и забыл»

FFSK модем - CMX469A

Достоинства модема СМХ469А

- Скорость передачи 1200/2400/4800bps
- Сверхнизкое энергопотребление
 - < 1.5 mA при 2.7В
- Простой интерфейс
 - Небольшая программа, простая обвязка
- Встроенная функция обнаружения несущей
- Высокая чувствительность
 - Лучше чем 150mV RMS
- Минимальная частота ошибок по битам
 - <10⁻⁸ при 20dB сигнал.шум и 1.5 в 1k при 12dB


Другие беспроводные модемы

- CMX909B GMSK модем
 - Включен формирователь пакетов
 - До 38.4Kbps
 - Подходить для терминалов Mobitex
- FX919 4-уровневый FSK модем
 - Формирование пакета данных
 - Скорость передачи до 19.2Kbps

Модемы для проводной передачи данных Почему мы используем изоляционный барьер?

- который также известен как гальваническая развязка
- Решаются 2 задачи:
 - Изолирование пользователя от линии. По различным причинам высокое напряжение может появиться в линии.
 - Изолирование телефонной линии от высокого напряжения.
 - Обычно гальваническая развязка бывает:
 - Оптическая
 - Трансформаторная
 - На конденсаторах



Достоинство безбарьерной схемотехники

- Энергия может потребляться от телефонной линии
- Разработка упрощена из-за отсутствия трансформатора
- Схемотехника безопасна
- Уменьшенная по размерам печатная плата

Блок-схема СМХ878

COMMUNICATION SEMICONDUCTORS

Особенности СМХ878

- Поддержка V.22bis, V.22/Bell 212A, V.21/Bell 103, V.23/Bell 202
- Низкое энергопотребление: раб. ток 3.5mA
- Стабилизатор напряжения для МК
- АЦП позволяет распознавать 'Линия присутствует', 'Линия занята' и 'Параллельный телефон подключен'
- 3 входа/выхода для внешнего управления
- Работает на линиях с напряжением ниже 6В
- Разработано для Европы и С.Америки Не требует внешних источников напряжения

Приложение – типовые охранные

Приложение — типовые охранные панели

Предусмотрены интерфейсы для:

- Телефонной линии
- Клавиатуры
- Дисплея
- Датчиков
- Силовых источников
- Дополнительных схем

СМХ850 имеет

- Функции телефона и модема, включая независимый АОН
- Настраиваемый сканер клавиатуры
- Порты доступные для простого подключения ЖК дисплея
- Вспомогательные каналы АЦП
- 2 порта ШИМ
- Последовательный UART port CML Microcircuits

CMX850 Block Diagram

2xADC	Ocillators	RTC	K/B scanner
Wireline Modem	8051		Serial Port Counter/ Timer
Phone / Line I/F CAS			2xPWM External IRQ
Detector Watchdog	256kx8 Local RAM	8kx8 XRAM	Memory Controller 16 x 8 data

Функции портов ввода/вывода СМХ850

- Настраиваемый сканер клавиатуры:
 - До 8 строк х до 16 столбцов
- Последовательный порт:
 - UART или сдвиговые функции
 - От 225 бит/с до 64 бит/с
- 2 счетчика/таймера.
- 2 ШИМ.
- 3 внешних прерывания, 1 нулевого приоритета.

Тактирование СМХ850

- <u>Частота</u> 11.592 МНz. или 12.288 МНz
- Делитель частоты для малопотребляющих режимов:
 - $\div 4 \text{ to } \div 1024$
- Внутренняя 5.5 МНz.
 - Низкопотребляющий режим
- Часы реального времени:
 - Делитель частоты для ЧРВ с посекундным интервалом
 - Функция «заморозки» для синхронизации
 - 4-byte таймер
 - Функции Тревожных сигнал в реальном времени

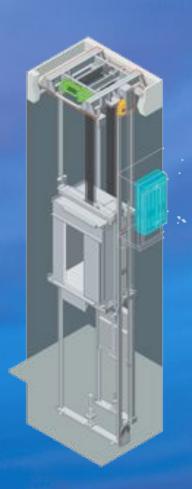
Проводной модем СМХ850

- Порт для линии и выход на телефонную трубку.
 - Дифференциальный вход ОУ с трактом обратной связи
- Функции телефона:
 - Генерация и декодирование DTMF
 - Генерация и декодирование тонов
 - Обнаружение входящего звонка и поднятия трубки
 - Набор номера
 - Сигнальная информация при определении входящего номера при снятой трубке
- Модемные функции:
 - V.22bis, V.22, V.23, V.21, Bell 202, Bell 212A
 - Защитные тоны
 - Эквалайзер
 - Скремблер

Дополнительные функции CMX850

• АЦП:

- 2 мультиплексированных выхода с последовательным приближением
- Сэмплирование и хранение в обоих каналах
- 10 битное разрешение
- Низкий/Высокий порог срабатывания
- Сторожевой таймер
 - Делительг $\div 1, 8, 64, 256$
 - Прерывание на программную перезагрузку при тайм-уате



Доп. функции СМХ850

- Независимый тракт для АОН:
 - Сверхнизкое потребление энергии при необходимости
 - Выход из режима пониженного потребления при входящем звонке с нужного номера
- Загрузочная ROM для внутрисхемного программирования flash rom:
 - Посекторное перепрограммирование
 - Уменьшение стоимости производства
 - Различные программы для одного продукта
- Альтернативные блоки памяти:
 - Масочная память для уменьшения внешних компонентов
 - Шифрование памяти программ для защиты кода

Пример 1 – приложение, использующее CML

- Сигнализация в лифте
- Специальные требования для Европы
- Требования
 - Оборудование для передачи голоса и данных для сигнализации и диагностики
 - Малое потребление/питание от линии.
- Разработка на базеСМХ878
- Выгода, получаемая заказчиком
 - Малое потребление/питание от линии
 - Коммерческая выгода

Пример 2

- Таксофон нового поколения
- Требования
 - Управление таксофоном и связью
 - Объем- до 20000 штук в год
- СМХ850 в разработке
- Выигрышные достоинства :-
 - Высокая интеграция
 - Законченное решение на основе чипа CML
 - Конкурентная цена

Пример 3

- Электронный счетчик
- Требования
 - Новая версия счетчика с возможностью удаленного снятия данных и диагностики
- До 100000 штук в год
- СМХ469А в разработке
- Выигрышные достоинства :-
 - Конкурентная цена
 - Высокая производительность
 - Долговременная перспектива выпуска микросхем

Пример 4

- Охранная панель
- Требования
 - Экстренная связь и управление, включая отсылку SMS
- До 20000 штук в год
- СМХ868 в разработке
- Выигрышные факторы :-
 - Гибкость в программировании пользовательских программных кодов
 - Конкурентная цена

