В III МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ «ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ НА ВЗРЫВОПОЖАРООПАСНЫХ И ХИМИЧЕСКИ ОПАСНЫХ ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ» 17 - 20 февраля 2009 года, г. Уфа

Опыт применения программного обеспечения Det Norske Veritas (DNV) PHAST-SAFETI для оценки риска промышленных объектов в России

- к.ф. м.н. Пантелеев В.А., ООО «Институт Риска и безопасности»
- Назаренко Д.И., ООО «Институт Риска и безопасности»
- Мельников А.В., ООО «ВНИИГАЗ»
- к.т.н. Бодриков О.В., ООО "Газпромэнергодиагностика"

Программное обеспечение DNV для анализа и управления рисками

- DNV Pro HAZOP, идентификация рисков
- DUST EXPERT экспертная система по оценки риска от взрывоопасных пылей
- DNV Leak оценка частоты течей оборудования и трубопроводов
- RiskSpectrum деревья событий и отказов
- ORBIT аудит безопасности, качественная оценка риска, идентификация рисков
- PHAST анализ последствий аварий
- SAFETI количественная оценка риска
- PHAST\$ финансовый анализ последствий аварий
- SAFETI\$ количественная оценка финансового риска

Пользователи PHAST и SAFETI

PHAST - 450 SAFETI - 150

- Government of Queensland Chem. Unit (AUSTRALIA)
- European Commission Joint Research Centre (ITALY)
- Amoco Corporation (USA)
- Dow Chemicals (USA)
- Dupont Corporation (USA)
- Exxon-Mobil (USA)
- Shell (UK)
- British Petroleum (UK)
- DCMR Environmental Control Agency (NETHERLANDS)

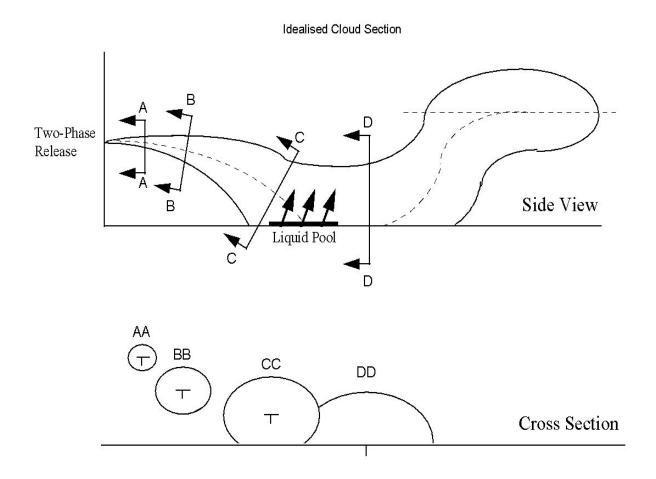
Проект ТАСИС «Содействие Министерству по чрезвычайным ситуациям в области предупреждения и ликвидации аварий» 2000-2001 г. FINRUS 9806

- ООО «Институт риска и безопасности» (SAFETI)
- ВНИИГОЧС (SAFETI)
- ТЦМП ГУ ЧС по Курской области (PHAST)

- В 2006 году PHAST приобретен инжиниринговой фирмой ООО «ПетерГАЗ»
- В 2008 году SAFETI приобретен ВНИИГАЗ

Программное обеспечение в области оценка риска и последствий

Фирма	Программа	Возможности					
		Расчет последствий Расчет риска		Комментарии			
DNV,,	"PHAST"	ДА	HET	Оба пакета "Micro" (упрощенная в ерсия) и	7-15		
Великобритани я	"SAFETI"	ДА	ДА	"Professional" (полная версия), широкий спектр аварий, современные модели, мировое признание	40 - 50		
	"EFFECTS"	HET	HET	Согласно "Желтой книги", широкий спектр аварий, современные модели, мировое признание	4.5		
TNO, Нидерланды	"DAMAGE"	ДА	НЕТ	Согласно "Зеленой книги", широкий спектр аварий, современные модели, мировое признание	1		
	"RISK CURVES"	ДА	ДА	широкий спектр аварий, мировое признание, современные модели	40		
SHELL	"FRED" (включая Pipa)	ДА	HET	Пожаро- взрывоопа сность, современные модели	9		
(marketed by	"PIPA"	ДА	ДА НЕТ Пожаро- взрывоопа сность, современные модел		5		
EnvirosUK)	"LPG Lite"	ДА	ДА	Только для СУГ	8		
	PROCESS RISK TOOL	ДА	ДА	Пожаро- в зрыв оопа сность	нет данных		
Artur D. Little, CIIIA	SUPERSHEMS	ДА	НЕТ	широкий спектр аварий			
SAFER System L.L.C., CIIIA	TRACE	ДА	НЕТ	широкий спектр аварий			
PLG Inc., CIIIA	RISKMAN	НЕТ	НЕТ	анализ деревьев событий и отказов (подготовка исходных данных для QCRR)	30 000		
	QCRR (Quantitative Chemical Release Risk)	ДА	ДА	широкий спектр аварий			
RISK, США	LFGRISK	ДА	HET	анализ опасности СУГ	2000		
	DEGATEC	HET	HET	распространение тяжелых газов	1000		
	XPLOSION	HET	HET	Взрывы, BLEVE	650		
ЕРА, США	ALOHA	ДА	HET	Оценка токсических выбросов	300		

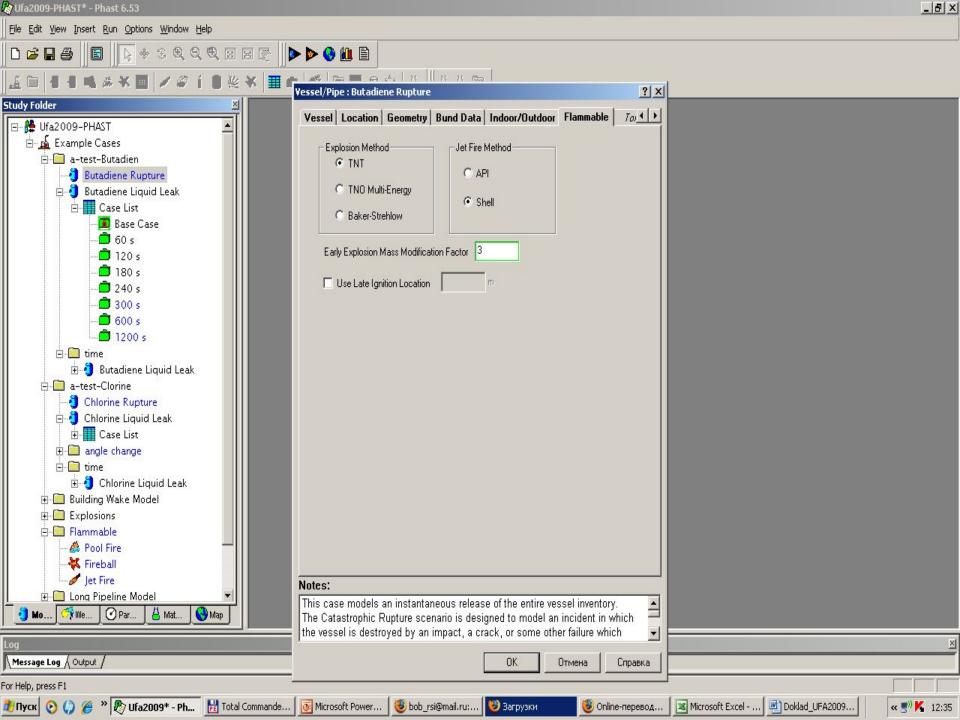

Тендер ТАСИС

SAFETI (DNV, EU),

RISKCURVE (TNO, Нидерланды)

PROCESS RISK TOOL (Shell, Великобритания).

Универсальная модель атмосферной дисперсии (UDM)

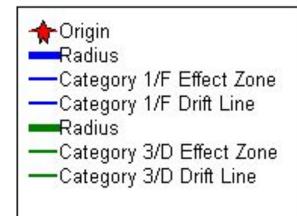


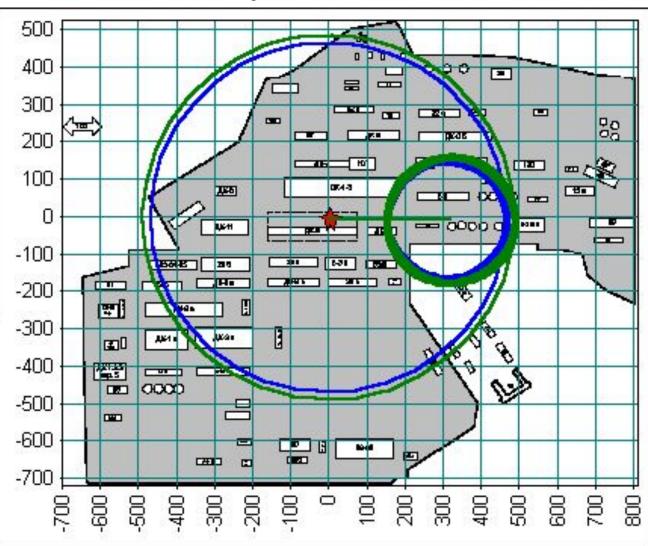
Экспериментальная верификация UDM

- *Prairie Grass* невесомая примесь, плоская поверхность, различная стабильность атмосферы.
- **Desert Tortoise** жидкий аммиак, двухфазное истечение из трубы, выпадение капель на землю.
- *EEC* истечение жидкого пропана, двухфазный аэрозоль.
- *FLADIS* дисперсия аммиачного эарозоля.
- *Goldfish* дисперсия двухфазного аэрозоля HF.
- *Burro* испарение и дисперсия пролива LNG на твердой поверхности.
- *Maplin Sands* испарение и дисперсия пролива LNG на поверхности моря.
- Thorney Island дисперсия фреонов.

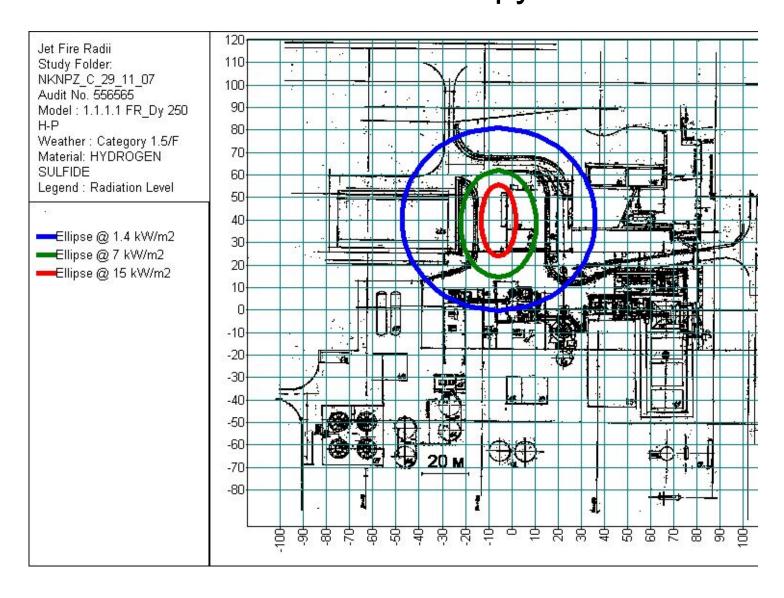
Основные возможности PHAST (Process Hazard Analysis Software Tools)

- широкий спектр исходных аварийных событий: катастрофический разрыв корпуса, течь, обрыв коротких и длинных трубопроводов, работа предохранительных клапанов и мембран, проливы, выброс в здании с естественной и принудительной вентиляцией
- широкий спектр опасных воздействий: взрывы ТВС, BLEVE, пожар вспышка, огненная струя, пожар пролива, токсическое воздействие
- универсальная модель распространения примеси в атмосфере (UDM) позволяет учитывать большое число явлений: нестационарный характер истечения и распространения, особенности распространения тяжелого и легкого газа, теплообмен с окружающей средой, в том числе и двухфазной примеси, кинетическую энергию истечения
- Встроенная база данных веществ, возможность введения новых веществ и смесей
- Возможность выбора моделей частных явления (огненная струя API, SHELL, взрыв ТВС TNT, Baker Strehlow, Multi-Energy

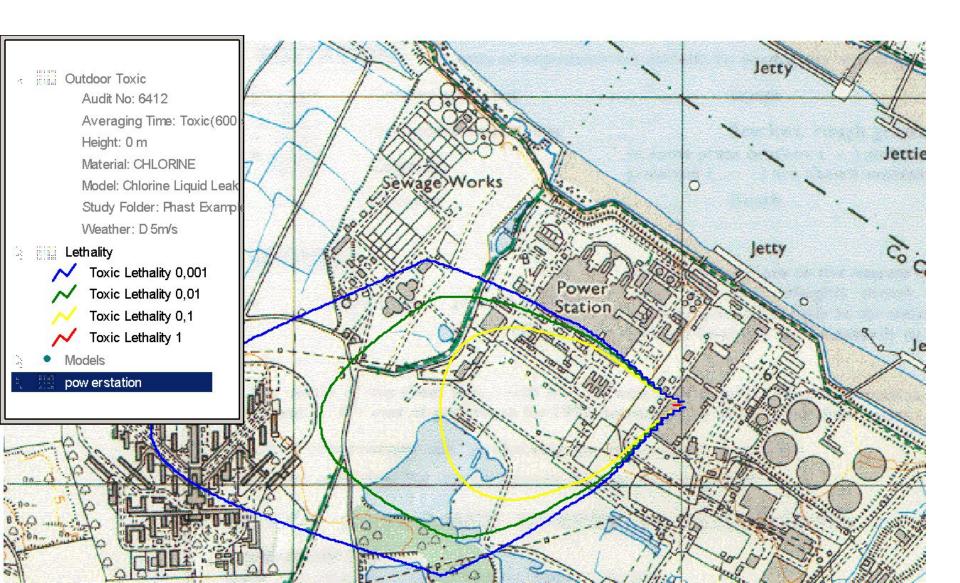



Пример оценки величины зоны поражения при дрейфе облака ПГФ, Бутадиен, *3СК

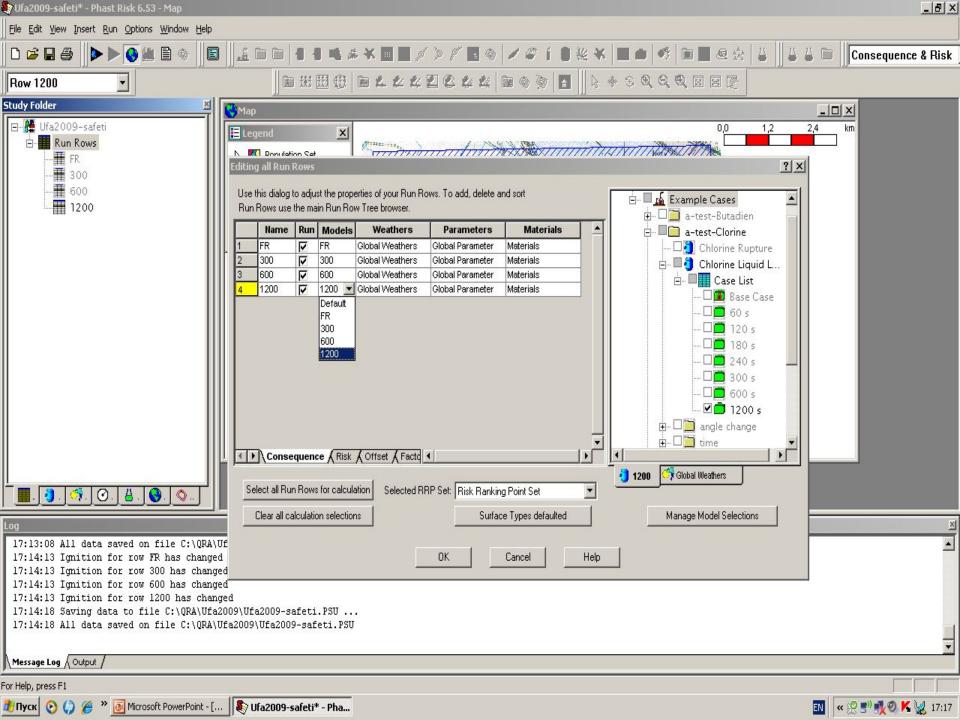
Audit No. 18002


Model: 5.3 Vessel Source Material: 1,3-BUTADIENE Worst Cases @ 0.14 bar

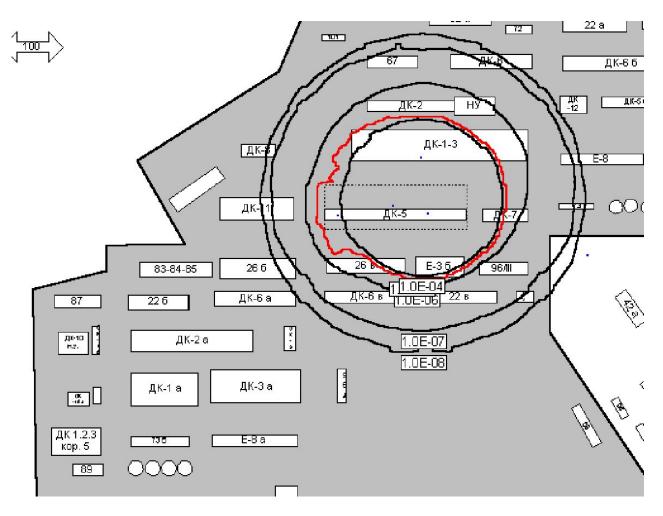
Weathers



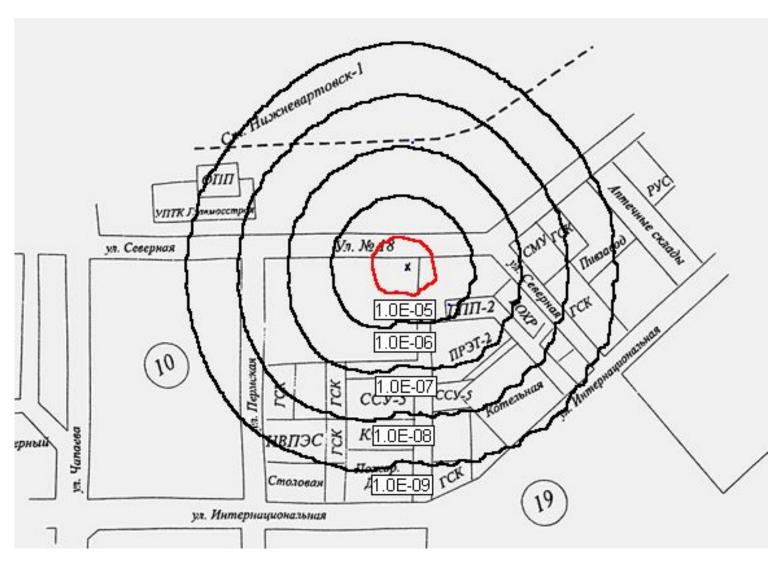
Пример оценки величины зоны поражения от огненной струи



Пример оценки величины зоны токсического поражения, 40 т, Хлор


Основные возможности SAFETI

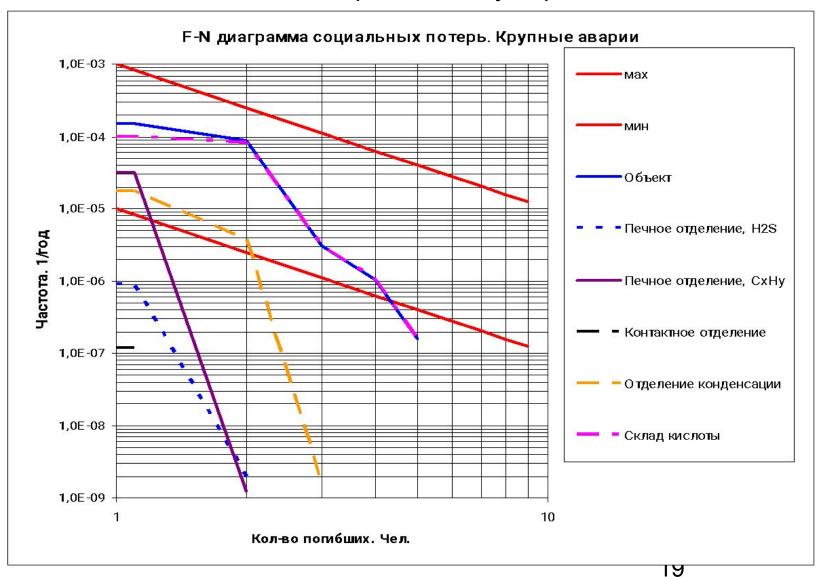
- Построение полей территориального риска
- Построение вероятных кривых потерь (F-N кривых)
- Величина территориального риска и вклады сценариев в фиксированных точках
- Величина коллективного риска и вклады сценариев
- Распределение населения в окрестностях объекта
- Ранжирование сценариев по вкладу в коллективных риск
- Учет распределения источников зажигания
- Учет вероятности реализации сочетания погодных условиях
- Гибкая система построения задачи позволяющая проводить анализ, вкладов в риски сценариев, установок, времени суток, контингентов рискующих



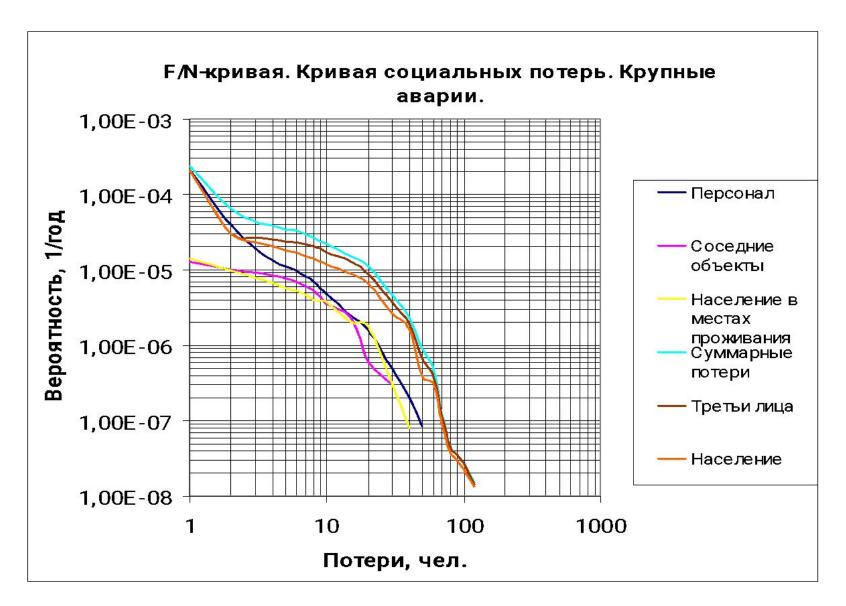
Изолинии территориального риска

Установка очистки бутадиена

Изолинии территориального риска, Водоканал ВОС

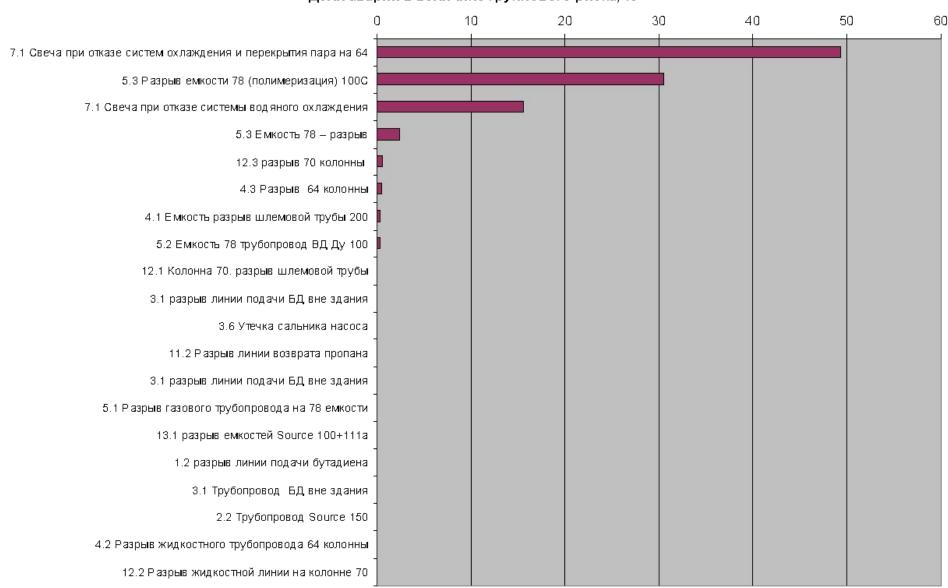


Изолинии территориального риска Установка утилизации сероводорода.



Пример F-N кривой,

Установка по производству серной кислоты



Пример F-N кривой, аммиачный холодильник

Вклады сценариев в величину социального риска

Пример таблицы вкладов сценариев в величину коллективного риска

№ п/п		Список сценариев	Вероятно сть смерти в год	Вкла д, %	Среднее число погибши х, на аварию	Вероятность числа погибших в год-0-1	Вероятность числа погибших в год-1-10	Вероятность числа погибших в год-10-100
1	5.1.	Полный разрыв ГОГ-4,5	3.57*10-5	13.7	1.78	7.52*10-6	1.16*10-5	0
2	4.1.	Полный разрыв ГС-3	3.44*10-5	13.2	1.72	4.08*10-6	1.14*10-5	0
3	1.1.	Полный разрыв С-1-3 Г	1.44*10-5	5.5	1.44	1.59*10-6	3.97*10-6	0
4	2.1.	Полный разрыв Г ГС-3	1.42*10-5	5.5	1.42	1.53*10-6	3.97*10-6	0
5	5.1.	Полный разрыв ЖОГ-4,6	1.34*10-5	5.1	6.68*10-1	0	6.83*10-6	0
6	1.1.	Полный разрыв С-1-2 Г	1.26*10-5	4.8	1.26	1.87*10-10	3.00*10-6	0
7	2.1.	Полный разрыв Г ГС-2	1.23*10-5	4.7	1.23	1.86*10-10	3.00*10-6	0
8	3.1.	Полный разрыв ГОГ-1	1.07*10-5	4.1	1.07	1.13*10-10	3.00*10-6	3.71*10-12
9	1.1.	Полный разрыв С-1-1 Г	1.07*10-5	4.1	1.07	1.12*10-10	3.00*10-6	2.10*10-12
10	2.1.	Полный разрыв Г ГС-1	1.06*10-5	4.1	1.06	1.09*10-10	3.00*10-6	1.85*10-12
11	3.1.	Полный разрыв ГОГ-2	1.06*10-5	4.1	1.06	1.05*10-10	3.00*10-6	0
12	3.1.	Полный разрыв ГОГ-3	1.03*10-5	3.9	1.03	1.25*10-6	3.31*10-6	0
13	3.5.	Течь 25 мм по ЖФ ОГ-3	8.90*10-6	3.4	8.99*10-2	3.98*10-5	0	0
14	7.2.	Течь 25 мм	6.49*10-6	2.5	3.09*10-2	5.40*10-5	0	0
15	3.5.	Течь 25 мм по ЖФ ОГ-2	5.51*10-6	2.1	5.57*10-2	2.00*10-5	0	0
16	3.5.	Течь 25 мм по ЖФ ОГ-1	5.13*10-6	2	5.18*10-2	1.92*10-5	6.18*10-7	0
17	3.1.	Полный разрыв Ж ОГ-3	3.65*10-6	1.4	3.65*10-1	2.64*10-6	8.83*10-7	0
18	5.7.	Отрыв эмульсионного трубопровода	3.26*10-6	1.3	1.09	1.06*10-6	1.63*10-6	0

22

Пример таблицы вкладов сценариев в величину индивидуального риска в характерных точках

№ п/		Авар ия	Отето	йник	и 4,5		АБК	:	C	толов	RRS	Лабор ато	р ня ,	ДНС-32
n			Величина риска	Вкл ад, %	Величин а риска на авар ию	Величин а риска	Вкл ад, %	Величина риска	Величин ариска на аварию	Вкл ад, %	Величина риска на аварию	Величина риска	Вкл ад, %	Величин а риска на аварию
1	3.1.	Полный разрыв ГОГ-1	0	0	0	0	0	0	0	0	0	0	0	0
2	1.1.	Полный разрыв С-1-1 Г	3.49*10-7	0.4	3.49*10-2	0	0	0	0	0	0	0	0	0
3	2.1.	Полный разрыв Г ГС-1	2.40*10-7	0.3	2.40*10-2	0	0	0	0	0	0	0	0	0
4	3.5.	Течь 25 мм по ЖФ ОГ-1	0	0	0	0	0	0	0	0	0	0	0	0
5	1.6.	Течь 25 мм по ЖФ C-1-1 H	0	0	0	0	0	0	0	0	0	0	0	0
6	4.7.	Отрыв жидкостного трубопровода С-3 Н	8.41*10-7	1.1	4.67*10-1	5.92*10-8	34.1	3.29*10-2	0	0	0	0	0	0
7	1.7.	Отрыв жидкостного трубопровода С-1-1 Н	2.44*10-8	0	8.13*10-2	7.79*10- 10	0.4	2.60*10-3	1.25*10- 10	0.2	4.16*10-4	1.03*10-8	9.4	3.43*10-2
8	1.5.	Отрыв газового трубопровода С-1-1 Н	3.17*10-8	0	5.28*10-2	3.13*10-8	18.1	5.22*10-2	1.58*10-8	28.8	2.63*10-2	1.65*10-8	15	2.75*10-2
9	2.5.	Отрыв газового трубопровода ГС-1 Н	3.17*10-8	0	5.28*10-2	3.13*10-8	18.1	5.22*10-2	1.58*10-8	28.8	2.63*10-2	1.65*10-8	15	2.75*10-2
10	1.5.	Отрыв газового трубопровода С-1-2 Н	4.31*10-8	0.1	7.19*10-2	1.59*10-8	9.2	2.65*10-2	8.86*10-9	16.2	1.48*10-2	1.46*10-8	13.3	2.43*10-2
11	2.5.	Отрыв газового трубопровода ГС-2 Н	3.89*10-8	0	6.49*10-2	1.58*10-8	9.1	2.64*10-2	7.66*10-9	14	1.28*10-2	1.03*10-8	9.3	1.71*10-2
12	1.5.	Отрыв газового трубопровода С-1-3 Н	1.62*10-8	0	2.70*10-2	6.31*10-9	3.6	1.05*10-2	0	0	0	1.27*10-10	0.1	2.12*10-4
13	2.5.	Отрыв газового трубопровода ГС-3 Н	1.73*10-8	0	2.88*10-2	4.10*10-9	2.4	6.83*10-3	0	0	23	3.92*10-12	0	6.54*10-6

PHAST- Financial - позволяет оценить экономические последствия аварий.

SAFETI- Financial – позволяет оценить вероятностные характеристики экономических рисков, в том числе ожидаемые потери и F-G кривые как вероятность аварий с масштабами последствий больше заданного.

В России не используется.

PHAST-SAFETI как программный продукт

- Развитие программного продукта с 2002 г.
 - возможность использования ГИС
 - адаптация под новые операционные системы (2009 год адаптация к Виста)
 - пожар склада с пестицидами
 - разработка финансовых модулей PHAST\$ и SAFETI\$
 - протяженные линейные источники
 - ввод и вывод в табличном виде из MS-EXEL
 - модуль для работы со сложными смесями веществ
 - ударные волны от BLEVE

-

- Горячая линия поддержки пользователей
- Регулярные тренинги и семинары
- Возможность тестового использования на 1 месяц
- Отчеты по верификации, развитый HELP и большое количество технической документации описывающей методики, модели и алгоритмы (1700 стр.).

Иностранная программа, методика это «Черный ящик»

Примеры технической документации

- UDM (Unified Dispersion Model) Theory Document 144 стр.
- UDM (Unified Dispersion Model) Verification Manual 198 стр.
- UDM Validation Document 107 стр.
- UDM (Unified Dispersion Model) Thermodynamic Theory Document 38 стр.
- Validation of the Unified Dispersion Model Against Kit Fox Field Data 62 стр.
- UDM (Unified Dispersion Model) Thermodynamic Verification Manual 67 стр.
- Droplet Size Theory Document 79 стр.
- BLBL (BLEVE Blast model) Theory Document 20 стр.
- ATEX (Atmospheric expansion model) Theory Document Oct 2005 DNV Software -18 ctp.
- DISC (Discharge model) Theory Document 49 ctp.
- GSPP (Gas pipeline model) Theory Document 88 ctp.
- PBRK (pipe break model) Theory Document (Long pipe model) 69 ctp.
- TARC (Tank Roof Collapse Model) Theory Document 22 ctp.
- A unified model for jet, heavy and passive dispersion including droplet rainout and re-evaporation 24 ctp.
- BLEVE (Fireball) Theory Document 23 стр.
- JFSH(Jet Fire) Theory Document 53 стр.
- EXPS (exposure model) Theory Document 49 ctp.
- Warehouse fire model Theory Manual 33. ctp.
- PVAP (Pool Vaporization) Verification 45 стр.
- MPACT Theory 137 стр.

Пример оценки вкладов оборудования в коллективный риск

Таблица 2.4.15. Вклад групп оборудования в величину коллективного риска

Источник аварии	Риск гибели чел. в	%
	год	
Площадка сепараторов	4,15*10-4	64.6 %
Площадка отстойников	1,46*10-4	22,7 %
Резервуарный парк	3,77*10-6	0,6%
Трубопровод на первую ступень сепарации	7,79*10-5	12,1%
Итого:	6,43*10-4	100.00%

Использование PHAST-SAFETI в России

- Разработка ДПБ (33)
- Разработка паспортов безопасности (7)
- Разработка проектных документов (ИТМ ГО ЧС, Промышленная безопасность и т.д.) (8)
- Методические работы (7)

Всего: около 55 работ

Примеры использования PHAST-SAFETI в России

- ДПБ пускового комплекса по производству терефталевой кислоты и полиэтилентерефталата пищевого назначения Башкирского полиэфирного комплекса ОАО «Полиэф». 2004 г. ВНИИ ГОЧС;
- Паспорта безопасности всех районов Центрального, Северного и Восточного административных округов г. Москвы. 2006 ВНИИ ГОЧС;
- Нефтеперевалочные терминалы Находки, Приморска, Мурманска ИРБ.
- Проект балтийского газопровода «Nord Strim», 2007-2008 ПЕТЕРГАЗ.
- Проект первой очереди добычи (ПОД или FSP) на месторождении Одопту. Оценка пожарного риска. Проект «Сахалин-1», Стадия-2. 2007 ВНИИ ГОЧС;

Использование PHAST-SAFETI в России

Типы объектов

- Объекты газо-нефте добычи (ДНС, УПН, ЦПС).
- Нефте и газопроводы
- Нефтеналивные морские терминалы
- Склады:
 - нефтепродуктов
 - АХОВ (хлор, аммиак, кислоты, фосген)
 - склады СУГ
- Объекты химической промышленности (окосинтез, производству терефталевой кислоты и полиэтилентерефталата, производство каучука)
- Водоканалы (склады хлора, хлораторные)
- Аммиачные холодильные установки
- Котельные и ТЭЦ

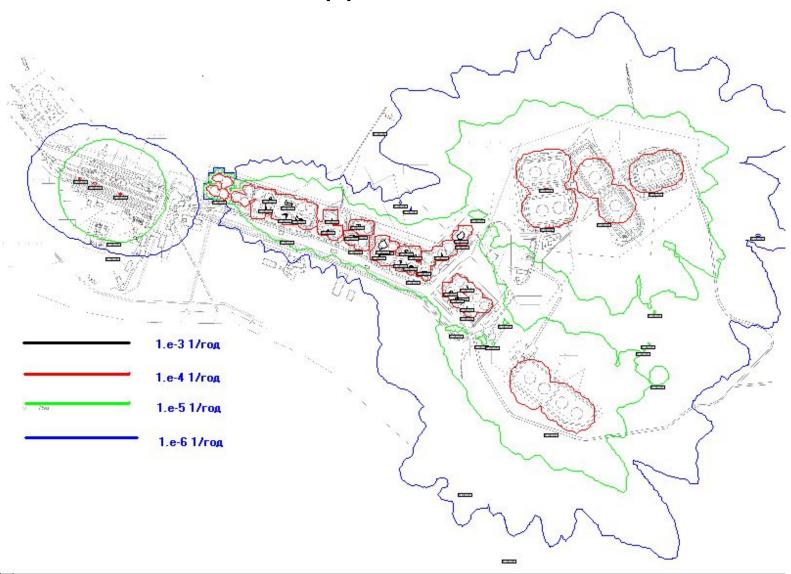
Перечень методических работ с использованием PHAST-SAFETI в России

Сопоставление ряда инженерных моделей приведенных в следующих стандартах СТО Газпром (ВНИИГАЗ)

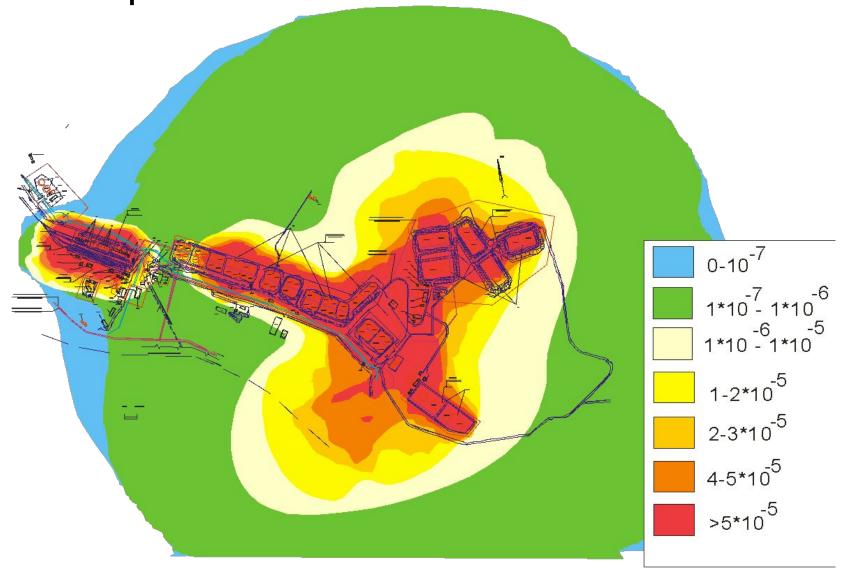
- «Методика анализа риска для опасных производственных объектов газодобывающих предприятий ОАО «Газпром»»;
- «Методические указания по проведению анализа риска для опасных производственных объектов газотранспортных предприятий ОАО «Газпром»»;
- «Методическое руководство по расчету и анализу рисков при эксплуатации объектов производства, хранения и морской транспортировки сжиженного и сжатого природного газа (LNG/CNG)»

Сравнение результатов оценки рисков по методике DNV и НТЦ «Промышленная безопасность» на примере нефтебазы «Грушовая»

Текущие работы по сравнению и верификации методик


32

Максимально возможное количество пострадавших при возникновении


аварий на декларируемом объекте «Нефтебаза Грушовая»

	Группа сценариев	Мето	дика НТЦ	Методика DNV		
		Из числа персонала	Из числа третьих лиц	Из числа персонала	Из числа третьих лиц	
C_1/C_3	Сторание облака паров нефти от пролива за пределы обвалования	До 180	До 50	До 100 (до 130 при 100% нахождении	До 50	
	Сторание облака паров нефти от пролива в обвалование или испарении из резервуара	До 72	До 50	вне помещений)		
C ₁ /C ₂ /C ₃	Пожар пролива в обвалование или в резервуаре	До 2	До нескольких человек			
	Пожар пролива за обвалованием	До 77	До 50			
\mathbf{C}_4	Сгорание облака в замкнутом объёме	До 10	-/-/-	До 20	-	
	Сгорание облака в открытом пространстве	До 12	-/-/-			
	Пожар пролива	До 10	-/-/-			
C ₆	Огненный шар	До 200	До нескольких десятков человек	До 60 (до 140 при нахождении 100% вне	-	
				помещения		
	Пожар пролива	До 4	-/ До 2/-	До 30	-	
	Сгорание облака в открытом объеме	До 61	-/До 4/До 12	33		

Изолинии территориального риска, методика DNV

Изолинии территориального риска, НТЦ «Промышленная безопасность»

Сравнение некоторых критериев риска

Наименование показателя риска	Значение НТЦ	Значение DNV
Частота возникновения аварийных ситуаций, связанных с возникновением поражающего эффекта (взрыв, пожар или огненный шар)	0,051 год ⁻¹	0,077 год ⁻¹
Общий коллективный риск для всех категорий людей	6,5×10 ⁻² чел./год	2,1×10 ⁻³ чел./год. 6х10 ⁻³ чел./год (при 100% населения на улице)

Сравнение зон поражения по методикам DNV и ГОСТ Р 12.3.047-98 Огненный шар, 66 т, газовый конденсат

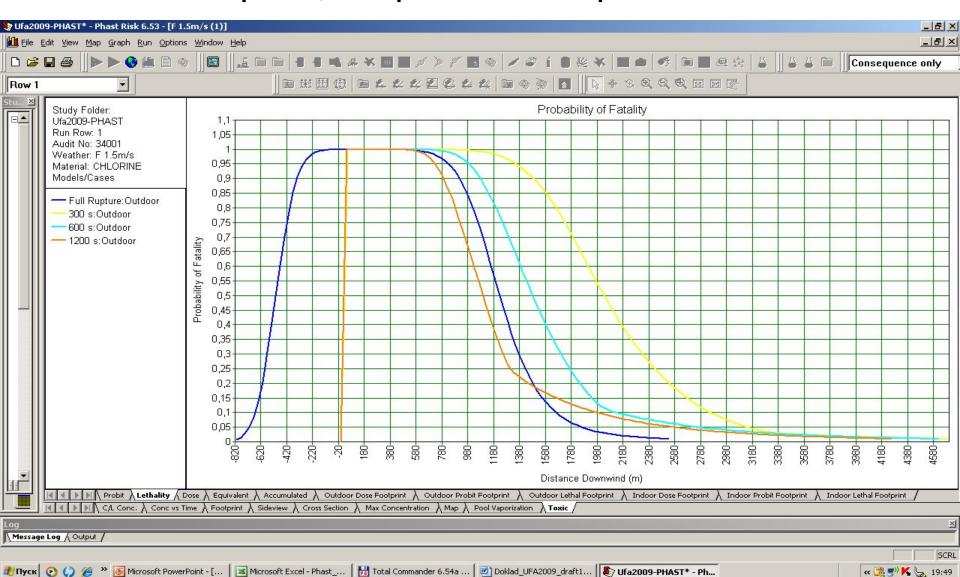
	PHAST	ГОСТ Р 12.3.047-98
Длительность,с	17	27
Радиус шара,м	116	100
Разрушение соседних емкостей , м	127	202
Воспламенение деревянных конструкций , м	250	305
Безопасное расстояние для объектов и людей, м	423	438

Сравнение зон поражения по методикам

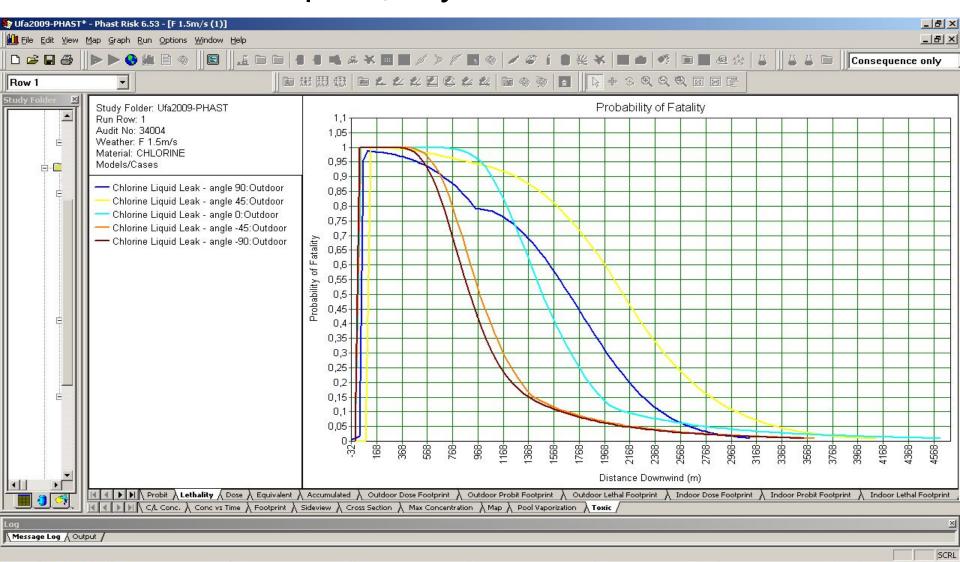
DNV и ГОСТ Р 12.3.047-98

Пожар пролива

Площадь пролива, м2	500	2400	2800	100000
Воспламенение деревянных конструкций, м	17 / 18	29 / 31	41 / 30	195 / 195
Безопасное расстояние для объектов и людей, м	50 / 30	75 / 51	87 / 35	360 / 214

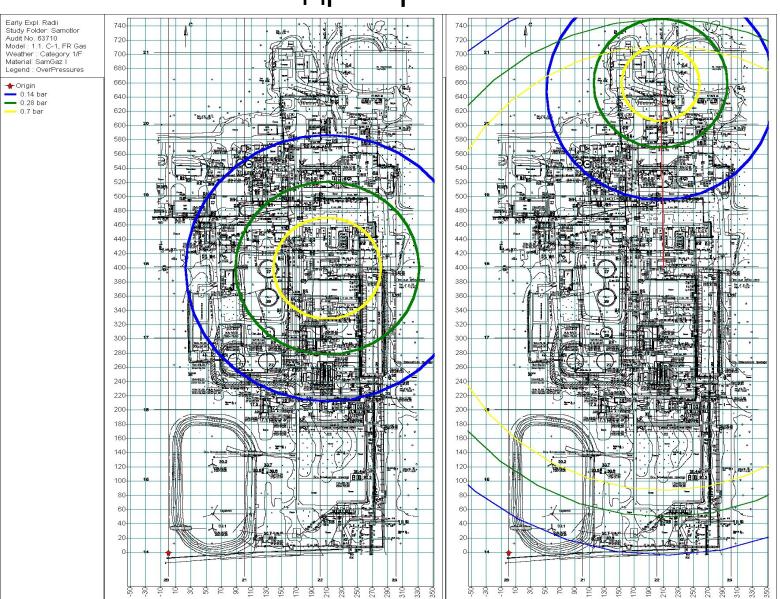

Сравнение зон поражения по методикам

DNV и Методика Всемирного банка


Рассеяние выброса до расстояний достижения топливо-воздушной смесью 0,5 НКПВ

Площадь пролива, м2	500, конденсат	2400, конденсат	2800, нефть	100000, нефть
0.5НКПВ	105 / 129	165 / 270	190 / 191	760 / 1430

Вероятность гибели при авариях Хлор (вагон-цистерна 15-1556), 57,5 т, 1,5/F. Вариация времени опорожнения


Вероятность гибели при авариях Хлор (вагон-цистерна 15-1556), 57,5 т, 1,5/F. Вариация угла истечения

« 🕞 💇 🍆 20:06

🥙 Пуск 📀 🕢 🏈 🦥 Microsoft PowerPoint - [... 🔣 Microsoft Excel - Phast_... 🔡 Total Commander 6.54a ... 🔯 Doklad_UFA2009_draft1... 📳 Ufa2009-PHAST* - Ph...

Пример оценки величины зоны поражения при дрейфе облака ПГФ

Изолинии территориального риска, склад фосгена

«Недостатки» PHAST-SAFETI

- Сложность моделей => уровень пользователя
- Большое число параметров => уровень пользователя
- «Иномарка» => объяснения с «экспертизой»
- Цена вопроса 40 000 GBP

Стоимость Ж/Д цистерны с бензином 2 700 000 руб. (54 000 GBP)

Стоимость разработки аналога:

3 человека

3 года

2000 USD в месяц

Сумма = $432\ 000\ USD\ (15\ 000\ 000\ руб.)$

Не русофицированнось