Сравнительный анализ методов определения класса опасности отходов

Бычкова Е. В.

Морока О. В.

Елистратова И. А.

Актуальность выбранной темы

 Проблема классификации отходов имеет определяющее значение в вопросах охраны окружающей среды, вовлечения отходов в хозяйственный оборот, администрирования платежей за негативное воздействие на окружающую среду, трансграничного перемещения отходов.

Цель исследования:

 определение класса опасности отдельных отходов и проведение сравнительного анализа существующих методик определения класса опасности отходов

Согласно Федеральному Закону «Об отходах производства и потребления» (ст. 4.1) от 24.06.98 с поправкой от 30.12.08 отходы подразделяются на:

- чрезвычайно опасные (І класс),
- высокоопасные (II класс),
- умеренно опасные (III класс),
- малоопасные (IV класс),
- практически неопасные отходы (V класс).

Для определения класса опасности были использованы следующие методики:

- 1. Критерии отнесения опасных отходов к классу опасности для окружающей природной среды, утвержденными приказом МПР России от 15 июня 2001г. №511. Расчет выполнялся в программе «Интеграл 2001 - 2006» версия 2.1.
- 2. СП 2.1.7.1386-03 Санитарные правила по определению класса опасности токсичных отходов производства и потребления. Расчет выполнен в программе «Интеграл 2001-2006» Версия 2.1 с учетом различий в методике подсчета усредненного параметра опасности.
- 3. Метод биотестирования выполнен на тест-объектах Daphnia magna в лаборатории «Центр лабораторного анализа и технических измерений по Новгородской области» в период с июня по июль 2009 г.

Для исследования и определения класса опасности были выбраны следующие отходы

- 1. Диален
- 2. Триаллат
- 3. Гальваношламы
- 4. Проммусор загрязненный
- 5. Фиксаж отработанный
- 6. Мусор производственный
- 7. Пыль черных металлов незагрязненная
- 8. Шприцы одноразовые
- 9. Опилки натуральной чистой древесины

1. Расчёт клас са опасности отхода с помощью «Критериев».

показатель характеризующий степень опасности отхода

$$K = K1 + K2 + ... + Kn, где$$

- Сі концентрация і-го компонента в отходе (мг/кг отхода);
- Wi коэффициент степени опасности i-того компонента отхода для ОПС (мг/кг).
- IgWi = 4 4 / Zi, для 1 < Zi < 2
- IgWi = Zi, для 2 < Zi < 4
- IgWi = 2 + 4 / (6 Zi), для 4 < Zi < 5, где

$$Zi = 4 Xi / 3 - 1 / 3$$

• где Xi - относительный параметр опасности компонента отхода.

$$Xi = (X1+X2+X3+...+XN) / N,$$

где N – число установленных параметров с учетом показателя информационного обеспечения.

Таблица. Степень опасности компонента отхода для ОПС для различных природных сред.

№ п/п	Наименование первичных показателей опасности компонента отхода	Значения, интервалы и характеристики первичных показателей опасности компонента отхода			
1.	ПДКп (ОДК), мг/кг	<1	1-10	10,1-100	>100
2.	Класс опасности в почве	1	2	3	-
3.	ПДКв (ОДУ, ОБУВ), мг/л	<0,01	0,01-0,1	0,11-1	>1
4.	Класс опасности в воде хозяйственно-питьевого использования	1	2	3	4
5.	ПДКр.х. (ОБУВ), мг/л	<0,001	0,001-0,01	0,011- 0,1	>0,1
6.	Класс опасности в воде рыбохозяйственного использования	1	2	3	4
7.	ПДКс.с. (ПДКм.р.,ОБУВ), мг/м ³	<0,01	0,01-0,1	0,11-1	>1
8.	Класс опасности в атмосферном воздухе	1	2	3	4
9.	ПДКпп (МДУ,МДС), мг/кг	<0,01	0,01-1	1,1-10	>10
10.	Lg(S,мг/л/ПДКв,мг.л)	>5	5-2	1,9-1	<1

Степень опасности компонента отхода для ОПС для различных природных сред.

11.	Lg (Снас,мг/м³/ПДКр.з)	>5	5-2	1,9-1	<1
12.	Lg(Снас,мг/м³/ПДКс.с.или ПДКм.р.)	>7	7-3.9	3,8-1,6	<1.6
13.	lg Kow(октанол/вода)	>4	4-2	1,9-0	<0
14.	LD_{50} ,мг/кг	<15	15-150	151-5000	>5000
15.	LC_{50} , $M\Gamma/M^3$	<500	500-5000	5001-50000	>50000
16.	LC ₅₀ водн, мг/л/96ч	<1	1-5	5,1-100	>100
17.	БД= БПК ₅ / ХПК	<0,1	0,1-0,6	0,61-0,9	>0,91
18.	Персистентность (трансформация в окружающей природной среде)	Образование более токсичных продуктов, в т.ч. обладающих отдаленными эффектами или новыми свойствами	Образование продуктов с более выраженным влиянием других критериев опасности	Образование продуктов, токсичность которых близка к токсичности исходного вещества	Образование менее токсичных продуктов
19.	Биоаккумуляция (поведение в пищевой цепочке)	Выраженное накопление во всех звеньях	Накопление в нескольких звеньях	Накопление в одном из звеньев	Нет накопления
	БАЛЛ (степень опасности компонента отхода для ОПС)	1	2	3	4

2. Расчёт класса опасности отхода с помощью Санитарных Правил.

Хі - усредненный параметр опасности компонента отхода.

Классификацию опасности отхода для здоровья человека и среды его обитания производят по таблице, которая предполагает четыре класса опасности:

Класс опасности отхода	1	2	3	4
К	>50000	50000-1000	1000-100	<100

3. Расчёт класса опасности отхода с помощью метода биотестирования.

процент погибших в тестируемой воде дафний по сравнению с контролем (A, %):

$$A = ((X\kappa-X\tau)/X\kappa)*100\%$$
, где

- Хк количество выживших дафний в контроле;
- Хт количество выживших дафний в тестируемой воде.

Зависимость класса опасности отхода от кратности разведения водной вытяжки этого же отхода

Класс опасности отхода	Кратность разведения водной вытяжки из опасного отхода, при которой вредное воздействие на гидробионтов отсутствует
I	> 10000
II	от 10000 до 1001
III	от 1000 до 101
IV	< 100
V	1

Сводная таблица результатов определения классов опасности отходов

Вид отхода	Класс опасности в соответствии с Критериями	Класс опасности в соответствии с СП	Класс опасности определенный с помощью тест-объекта
Триаллат	1	1	2
Диален	2	1	2
Гальваношламы	2	2	3
Проммусор загрязненный	2	2	3
Фиксаж отработанный	3	2	3
Мусор производственный	3	2	4
Пыль черных металлов незагрязненная	2	2	4
Шприцы одноразовые	2	1	4
Опилки натуральной чистой древесины	5	3	5

Расчетные методы отнесения опасных отходов к классу опасности для окружающей природной среды.

Достоинства:

- 1. Класс опасности отхода определяют в зависимости от концентрации токсичного компонента;
- 2. Точность качественного и количественного химического анализа, проводимого в аккредитованных лабораториях;
- 3. Проводят полный анализ воздействия токсичного вещества на организм (ПДК в различных средах, растворимость в воде, персистентность, путь поступления вещества в организм и др.)
- 4. Учитывается показатель информационного обеспечения. Чем он меньше (не определены многие параметры опасности) тем опаснее считается компонент отхода.
- 5. Вошли в основу создания лицензионных программ, например таких как «Интеграл», что приводит к быстрому и достаточно простому расчету класса опасности и возможности занесения в программу новых веществ и их параметров.

Недостатки:

- Не учитывают различную чувствительность организмов к одной и той же концентрации токсичного компонента отхода;
- 2. Поиск информации для определения степени опасности отхода делает его долгим и затруднительным;
- 3. При работе в программе «Интеграл» вызывают трудности несовпадение названий веществ, определяемых КХА и определенных в программе (Например, в КХА полиэтилен, в программе «Интеграл» полипропилен, в КХА органические вещества, в программе конкретно целлюлоза).

Memod биотестирования с использованием тест-объекта Daphnia magna.

Достоинства:

- Учитывает воздействие всех токсических веществ на живой организм;
- 2. Эксперимент проводится на наиболее чувствительных организмах, что увеличивает точность результатов;
- 3. Воспроизводимость опыта;
- 4. Влияние, таких факторов среды, как рН и недостаток кислорода;
- 5. Можно отследить как токсичная вытяжка в разных концентрациях влияет на жизненные функции организма (подвижность, репродуктивная функция и др.).

Недостатки:

- 1. Не учитываются меняющиеся условия окружающей среды (например, pH);
- 2. Стараются выбирать наиболее чувствительные организмы, но приоритет отдается наиболее быстрому и простому методу;
- 3. Результат зависит от индивидуальных особенностей человека (точность, ответственность, навыки);
- 4. Некорректные описания методики подготовки проб (например степень измельчения).

Рекомендации:

- 1. Устранить противоречия в определении класса опасности по СП и Критериям, утвердить единую методику определения класса опасности расчетным способом.
- Существенно дополнить базу данных первичных показателей опасности в лицензионных программах фирмы «Интеграл», что позволит повысить класс опасности некоторых отходов.
- 3. Отменить обязательность определения класса опасности для общераспространенных отходов.
- 4. Провести анализ совместимости классификаторов отходов в РФ и странах ЕЭС.
- 5. Разработать и утвердить методики установления других опасных свойств (по Базельской конвенции) и отнесение отходов по эти свойствам к определенному классу опасности.

СПАСИБО ЗА ВНИМАНИЕ!