РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук Кафедра «Нелинейного анализа и оптимизации»

Модернизированная функция с постоянной эластичностью замещения.

Выполнил: Евсюгин Андрей Владимирович

Научный руководитель: доц., к. ф.-м. н. Оленёв Николай Николаевич

Содержание работы

- Модернизированная функция с постоянной эластичностью замещения
- Численная реализация
- Заключение

CES-функция

$$Y(t) = Y_0 \left[a \left(\frac{R(t)}{R_0} \right)^{-b} + (1 - a) \left(\frac{M(t)}{M_0} \right)^{-b} \right]^{-\frac{1}{b}}, (1.1)$$

$$R^{-\rho_1} = a_1 L^{-\rho_1} + (1 - a_1) N^{-\rho_1},$$
 $z \partial e \rho_1 = \frac{1}{1 - \sigma_1},$ $(1.1.1)$

$$\frac{dL}{dt} = \gamma L(t), \qquad L(0) = L_0 (1.2)$$

$$\frac{dM}{dt} = J(t) - \mu M(t), M(0) = M_0 (1.3)$$

Воспроизводство мощностей промышленности в 1990-1999 гг. (%)								
Год	Выбытие	Обновление мощностей за счет ввода						
	мощностей	новых						
1990	2,8	?						
1991	3,6	1,2						
1992	5,3	0,8						
1997	6,6	1,5						
1998	11,3	1,0						
1999	11,2	2,4						

$$p_Y Y(t) + p_I I(t) = p_C C(t) + p_I J(t) + p_E E(t), (1.4)$$

$$Y(t) + \pi_I I(t) = Q(t) + \pi_I J(t) + \pi_E E(t), (1.5)$$

$$\sigma = \frac{\pi_J(t)J(t)}{Y(t) + \pi_J(t)I(t)}, (1.8)$$

$$\delta = \frac{\pi_E(t)E(t)}{Y(t)}, (1.9)$$

$$\rho = \frac{\pi_I(t)I(t)}{Y(t) - \pi_E(t)E(t)}, (1.10)$$

$$\pi_E(t)E(t) = \delta Y(t), (1.11)$$

$$\pi_I(t)I(t) = \rho(1-\delta)Y(t), (1.12)$$

$$\pi_J(t)J(t) = \sigma(1 + \rho(1 - \delta))Y(t), (1.13)$$

год	2005	2006	2007	2008	2009	2010
N(t)	102,07	124,03	149,63	175,73	169,7	203,8
L(t)	68,17	68,86	70,57	70,97	69,29	69,80
π_E(t)	1,00	1,14	1,08	1,78	0,64	1,08
π_I(t)	1,00	1,30	1,04	1,54	0,86	1,06
π_J(t)	1,00	1,18	1,13	1,32	0,76	1,02
Y(t)	720,3267	897,24	1108,25	1375,8933	1293,573	1505,757
I(t)	406,74	544,31	731,49	970,26	665,17	831,64
J(t)	120,37	157,67	223,87	292,72	265,87	305,07
E(t)	576,98	735,22	890,53	1180,09	765,24	975,75
Q(t)	429,71	575,69	653,84	388,08	1171,48	1021,72
p_I	1,00	1,28082152	1,134177	1,2810813	0,953619	1,096248
p_J	1,00	1,167	1,227	1,099	0,843	1,06
p_E	1,00	1,12944888	1,178985	1,4771653	0,71275	1,116393
p_Y	1,00	0,98654934	1,089273	0,8320372	1,107627	1,035053

$$\pi_E(t) = a_E + (1 - a_E)e^{-b_E(t-2005)}, (1.15)$$

$$\pi_I(t) = 1 - a_I(t - 2005)^2 e^{-b_I(t - 2005)}, (1.16)$$

$$\pi_J(t) = a_J + (1 - a_J)(1 + t - 2005)^2 e^{-b_J(t - 2005)}, (1.17)$$

$$D(X,Y) = \frac{n(\sum_{t=1}^{n} X_{t}Y_{t}) - (\sum_{t=1}^{n} X_{t})(\sum_{t=1}^{n} Y_{t})}{\sqrt{\left[nX_{t}X_{t}^{T} - (\sum_{t=1}^{n} X_{t})^{2}\right]\left[nY_{t}Y_{t}^{T} - (\sum_{t=1}^{n} Y_{t})^{2}\right]}}.$$

$$U(X,Y) = 1 - \sqrt{\frac{(\sum_{t=1}^{n} (X_t - Y_t))^2}{\sum_{t=1}^{n} X_t^2 + \sum_{t=1}^{n} Y_t^2}}$$

$$F = \prod_{j=1}^{2m} D_j(\vec{a}) U_j(\vec{a}), (1.25)$$

$$E_{t} = \frac{\delta Y_{t}}{\pi_{t}^{E}}, (1.27)$$

$$I_{t} = \frac{\rho(1 - \delta)Y_{t}}{\pi_{t}^{I}}, (1.28)$$

$$J_{t} = \frac{\sigma(1 + \rho(1 - \delta))Y_{t}}{\pi_{t}^{J}}, (1.29)$$

 $Q_t = ((1 - \sigma)(1 + \rho(1 - \delta)) - \delta)Y_t, (1.30)$

$$y_t = \left[ar_t^{-b} + (1-a)m_t^{-b}\right]^{-\frac{1}{b}}, (1.33)$$

$$m_{t+1} = (1-\mu)m_t + \frac{\alpha\beta y_t}{\pi_t^J}, m_0 = 1, (1.35)$$

$$\alpha = \frac{Y_0}{M_0}, \beta = \sigma(1-\rho(1-\delta)), (1.36)$$

$$\pi_t^J = a^J(1-a^J)(1+t)e^{-b^J t}, \pi_0^J = 1, (1.37)$$