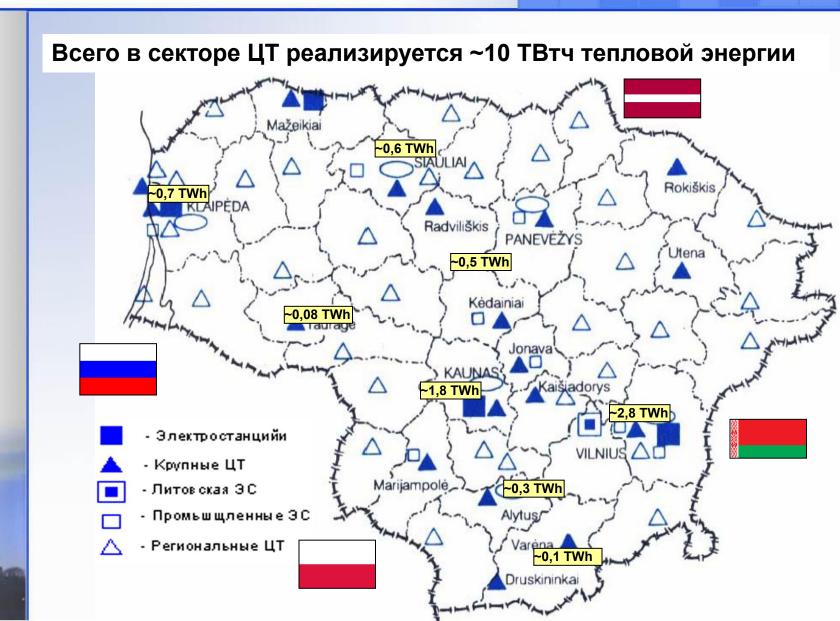


План развития высокоэффективной когенерации в секторе теплоснабжения (опыт Литвы)

Нериюс Расбурскис, директор ЗАО «Термосистему проектай»

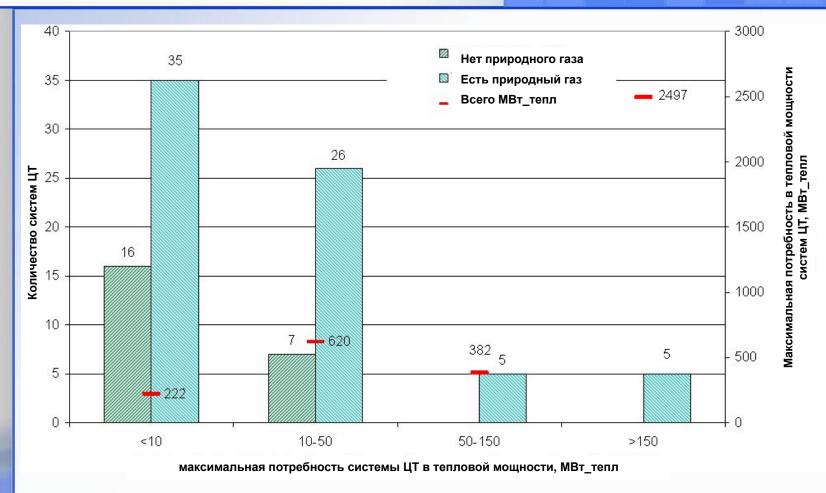
Содержание презентации

- 1. Потребность создания плана когенерации;
- 2. Анализируемый сектор;
- 3. Методический подход;
- 4 Результаты и воплощение плана.


Потребность создания

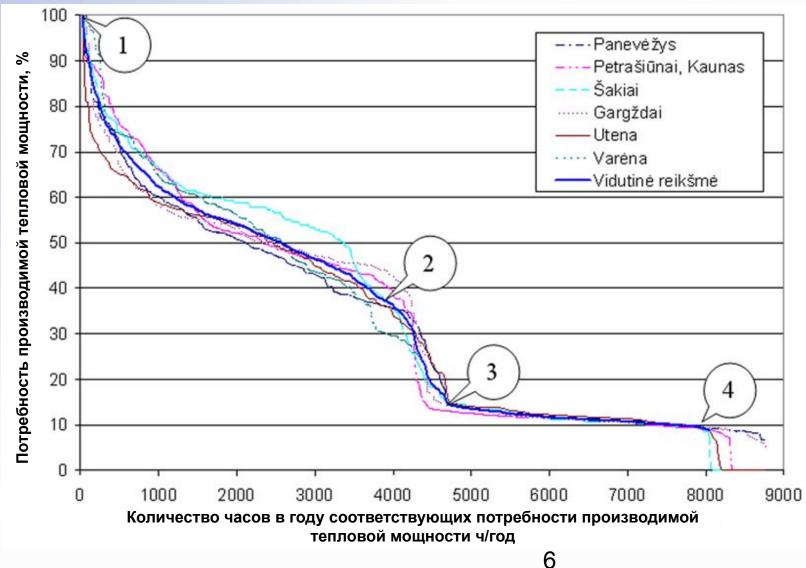
плана когенерации

- •Закрытие Игналинской АЭ до 2010 года ;
- •Высокая цена на природный газ (~480\$/1000nm³);
- •Общая эффективность основного производителя электроэнергии после 2009 года ООО "Lietuvos elektrinė" (1800 МВт) всего 38 %;
- •Стремление направленной модернизации централизованного теплоснабжения используя финансовую поддержку ЕС;
- •Указания ЕС директивы 2004/8/ЕВ (Экономия первичной энергии ЭПЭ >10%).

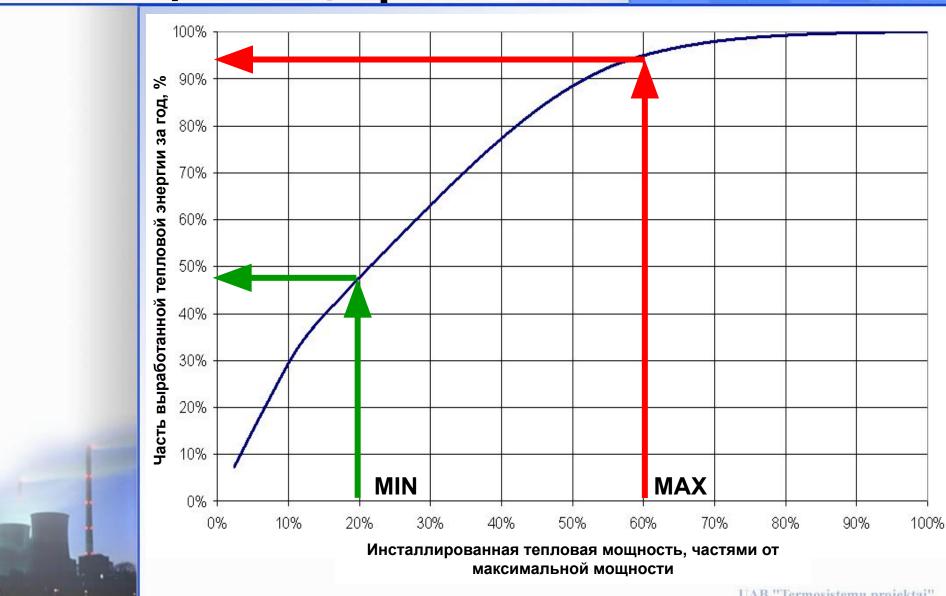


изтеми Централизованное теплоснабжение и приста (ЦТ) в Литве (1)

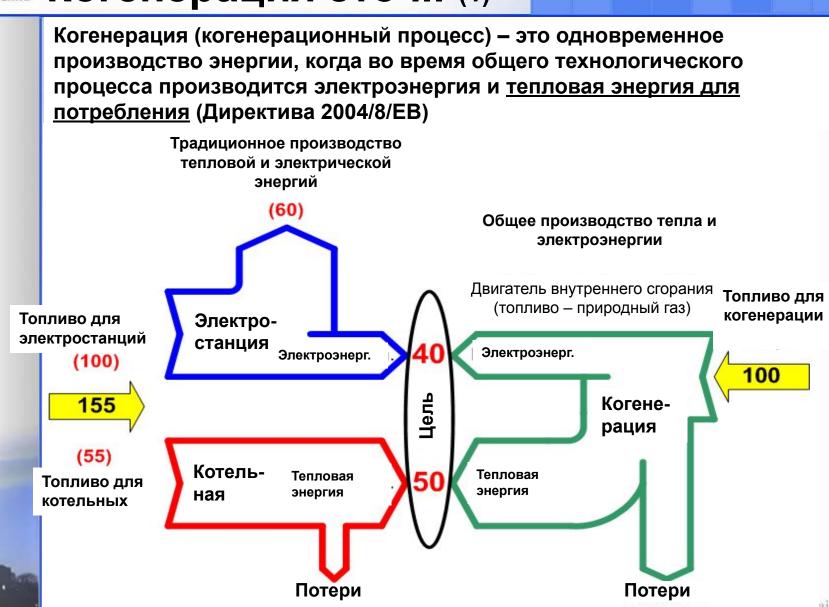
Централизованное теплоснабжение (ЦТ) в Литве (2)


- Всего гидравлически связанных систем 94 (>5ГВтч_тепл/год);
- Суммарная, максимальная потребность в тепловой мощности всех систем ЦТ 3721 МВт_тепл.

 UAB "Termosistemų projektai"


Методический подход

РРОЈЕКТАЈ ЦТ специфика (1)


Методический подход, РОЈЕКТАЈ ЦТ специфика (2)

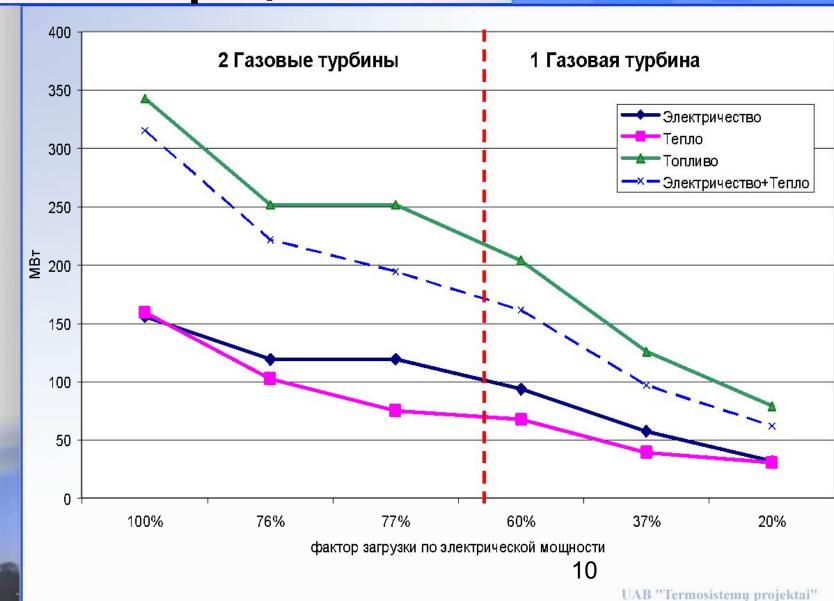
Методический подход,

ГРОЈЕКТАЈ Когенерация это ... (1)

(5)

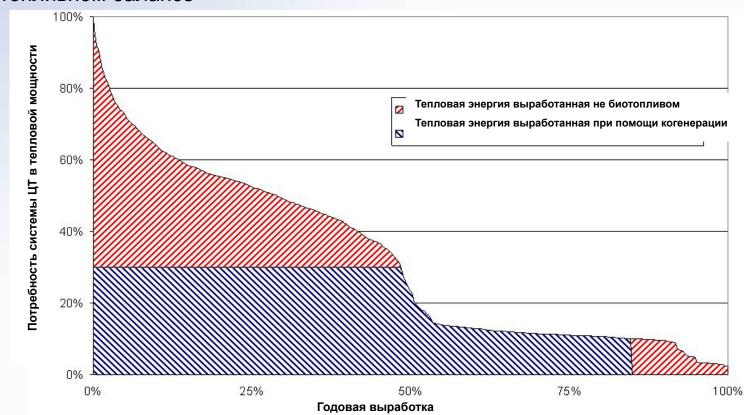
(10)

Методический подход,

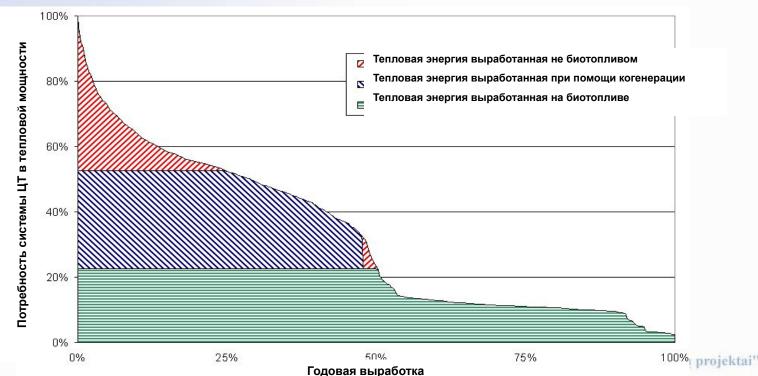

Ринкти Когенерация это ...(2)

Технология	Соотношение производства электрической/тепловой энергий										
	0,23	0,33	0,43	0,53	0,63	0,73	0,83	0,93	1,03	1,13	
Паровая турбина (ПТ)											
Двигатель внутреннего сгорания (ДВС)											
Газовая турбина (ГТ)											
Комбинированный цикл (КЦ)											

Методический подход,

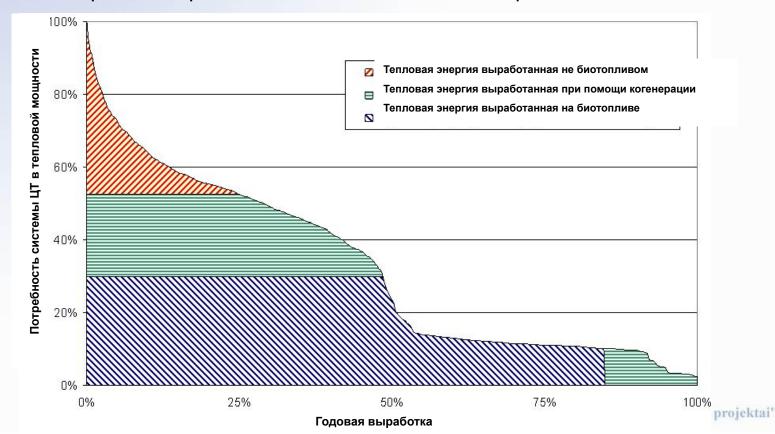

ГРОЈЕКТАЈ Когенерация это ...(3)

СНР технический ГРОЈЕКТАЈ ПОТЕНЦИАЛ (1)


I – модуль на природном газе (биотопливо не используется). Это типичная модель для больших и средних систем ЦТ (Каунас, Паневежис, Шяуляй и т.д.), когда как основное топливо используется природный газ, а резервное топливо – мазут или другое жидкое топливо. Внедрив в эти системы когенерационные устройства, увеличится расход природного газа, а в случаи развития биокогенерации – появляется значительная часть биотоплива в топливном балансе

СНР технический потенциал (2)

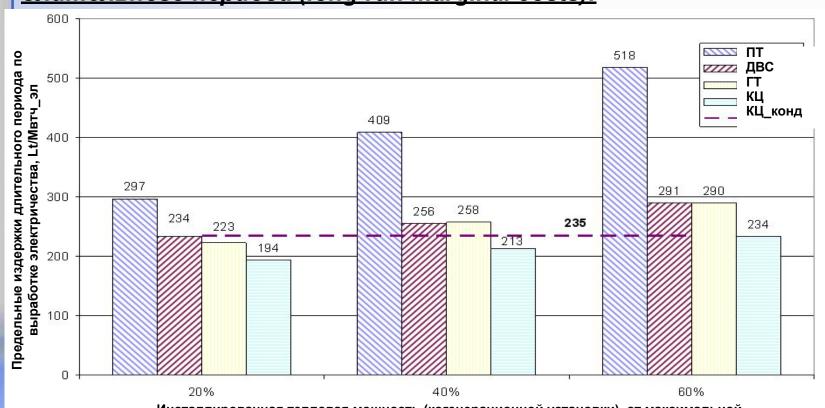
II – биотоплевный модуль приоритетный. Это ситуация, когда в систему ЦТ уже внедрен биотопливный котел. На сегодняшний день это реальная ситуация для средних и малых систем ЦТ, позволяющая организации иметь большую часть биотоплива в топлевном балансе. Внедряя в такие системы когенерационные модули, часть биотоплива в топливном балансе не уменьшается или даже увеличивается (в случаи внедрения биокогенерации). Использование природного газа увеличится лишь в том случае, если будет выбрана когенерационная технология на основе использования природного газа.



СНР технический

ГРОЈЕКТАЈ ПОТЕНЦИАЛ(3)

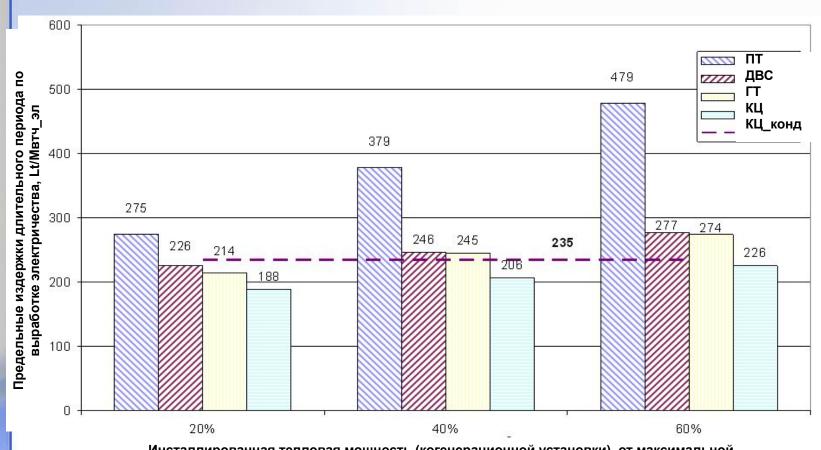
III – приоритетная модель развития когенерации. Это ситуация, когда в систему ЦТ уже внедрен биотопливный котел, но приоритет отдается производству электроенергии, стараясь максимально использовать диспонируемые потребности в тепловой энергии. Внедрив в такие системы когенерационной установки (работающие на природном газе), значительно уменьшится часть биотоплива в топливном балансе. В случаи внедрения биокогенерации потребность биотоплива сильно возрастет.



ГРОЈЕКТАЈ ОЦЕНКА (2)

1-сценарий (не используется биотопливо и не нужны инвестиции),

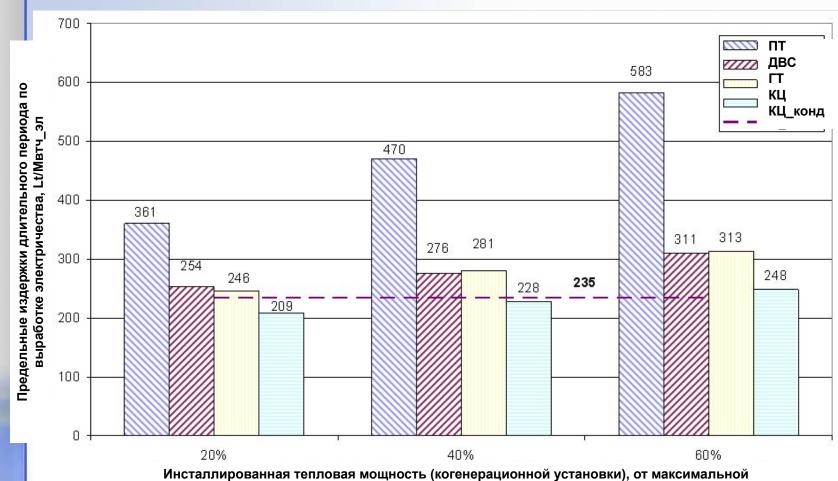
<u>Оценка произведена по принципу предельных издержков</u> <u>длительного периода (long-run marginal costs):</u>


Инсталлированная тепловая мощность (когенерационной установки), от максимальной мощности системы ЦТ

Цена на природный газ - 900 Lt/1000 Nm³; ₁₄ Цена биотоплива на единицу энергии меньше на 20% глюзівтеми ргојектай.

ГРОЈЕКТАЈ ОЦЕНКА(3)

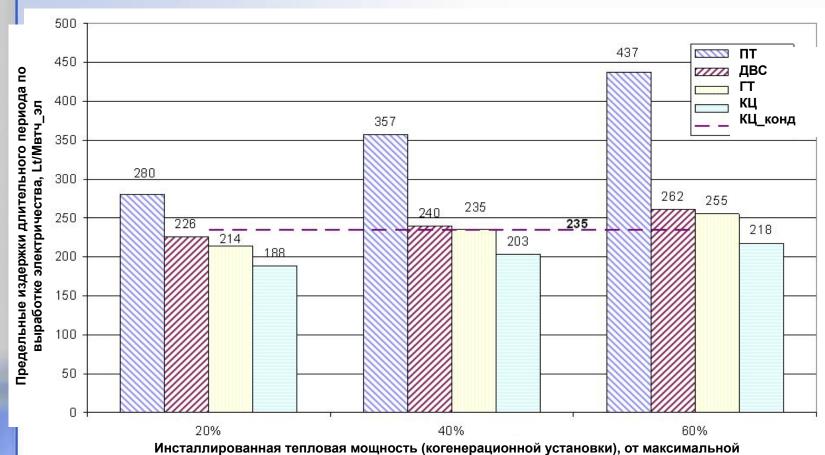
2-сценарий (не используется биотопливо но нужны инвестиции):


Инсталлированная тепловая мощность (когенерационной установки), от максимальной мощности системы ЦТ

Цена на природный газ - 900 Lt/1000 Nm3; 15 Цена биотоплива на единицу энергии меньше на 20% стиозівтеми ртојектаї.

ГРОЈЕКТАГ ОЦЕНКА(4)

3-сценарий (используется биотопливо и не нужны инвестиции):

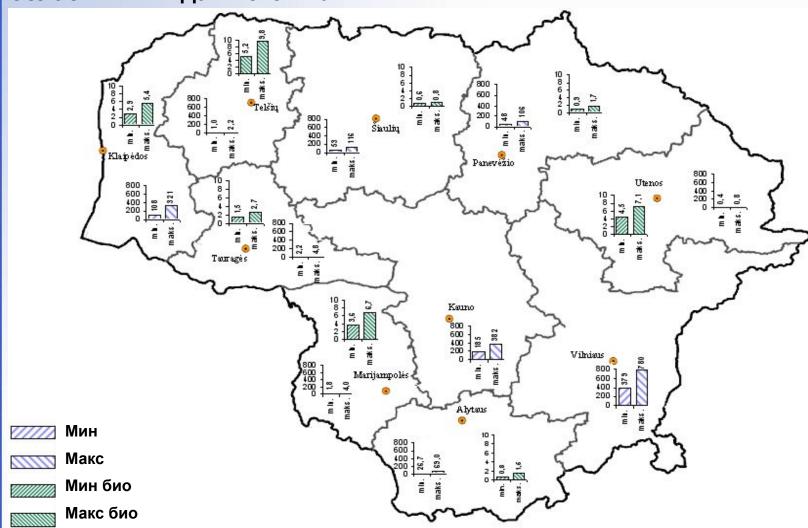

мощности системы ЦТ

Цена на природный газ - 900 Lt/1000 Nm3; Цена биотоплива на единицу энергии меньше на 20% rmosistemu projektai".

ГРОЈЕКТАЈ ОЦЕНКА(5)

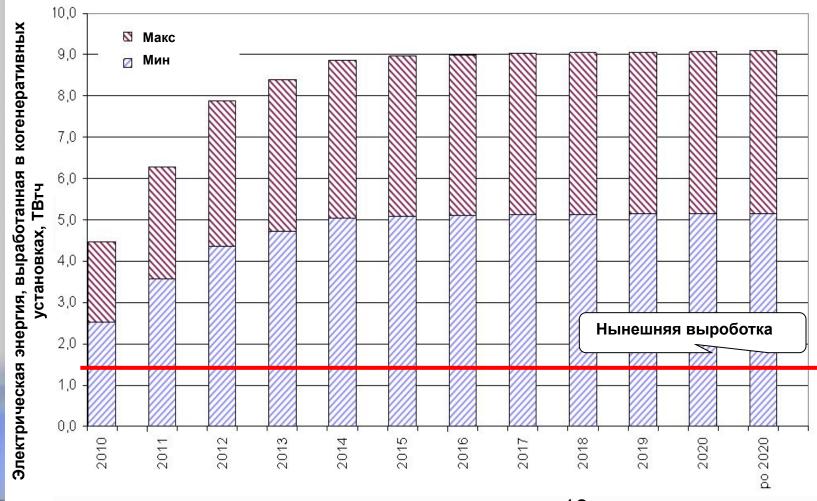
4-сценарий (используется биотопливо но нужны инвестиции):

Инсталлированная тепловая мощность (когенерационной установки), от максимальной мощности системы ЦТ


Цена на природный газ - 900 Lt/1000 Nm3; ₁₇ Цена биотоплива на единицу энергии меньше на 20%: mosistemy projektai"

План развития

когенерации (2)


Возможность использования когенерационных установок по областям и видам топлива :

План развития **ГРОЈЕКТАГ** КОГЕНЕРАЦИИ(3)

Годовое производство электроэнергии:

Результаты плана (1)

1.План охватывает 94 отдельных систем ЦТ. План подготовлен для периода времени на 10 лет;

2.Инсталлируемая электрическая мощность, в рамках плана развития когенерации, составляет от 826 МВт до 1822 МВт (сейчас установлено 590 МВт). В том числе, на основе биотоплива, можно установить от 51 МВт до 61 МВт;

Результаты плана (2)

- 3. Количество электрической энергии, которую могут выработать когенерационные устройства, предвиденные в данном плане развития, достигает от 5,2 ТВтч до 9,1 ТВтч за год. На основе биотоплива за год можно было бы выработать от 0,25 ТВтч до 0,37 ТВтч (на данный момент в секторе ЦТ производится всего 1,2-1,9 ТВтч электрической энергии за год);
- 4. Увеличивая общую эффективность производства электроэнергии, потребность импортированного топлива уменьшится с 0,35 млрд. до 0,54 млрд. Нм3 или это будет соответствовать от 11,7 % до 18,0 % нынешнего употребления природного газа Литвой;

Реализация плана:

Глижта Направления развития теплового хозяйства

Kryperu prieda:

KOGENERACINIŲ ELEKTRINIŲ PLĖTROS PLANAS

	Gyvenamosios	Kogeneracijos plėtra centralizuoto šilumos energ		Kogeneracinės elektrinės rekomenduojama elektrinė galia**, MW							
Nr.	Nr. Apskritis	vietovės pavadinimas	Aprūpinimo šiluma ir (ar) elektros energija sistemos pavadinimas	Kogeneracijos technologija *	2008 - 2					– 2020 m.	
					nuo	iki	nuo	iki	nuo	iki	
1.	Alytaus	Alytus	Alytaus miesto aprūpinimo šiluma sistema	KC	-	-	22,44	59,69	_	-	
2.	Alytaus	Druskininkai	Druskininkų miesto aprūpinimo šiluma sistema	VDV/DT	4,30	9,30	-	<u>-</u> -	<u></u>		
3.	Alytaus	Varėna	Varėnos miesto aprūpinimo šiluma sistema	GT	0,80	1,50	-	=	=	-	
4.	Kauno	Kaunas	Antanavos aprūpinimo šiluma sistema	VDV	0,29	0,63	-	-	-	-	
5.	Kauno	Kaunas	Plento aprūpinimo šiluma sistema	VDV	0,27	0,59	-	-		-	
6.	Kauno	Kaunas	Smetonos aprūpinimo šiluma sistema	VDV	0,38	0,82	-	-		-	
7.	Kauno	Kaunas	Kauno miesto integruoto tinklo aprūpinimo šiluma sistema	KC	-	-	171,81	352,86	-	-	
8.	Kauno	Domeikava	Domeikavos aprūpinimo šiluma sistema	VDV	-	=	0,24	0,52	=	-	
9.	Kauno	Garliava	Garliavos aprūpinimo šiluma sistema	VDV	-	-		-	0,89	1,93	
10.	Kauno	Neveronys	Neveronių aprūpinimo šiluma sistema	VDV	0,19	0,41	-	-	-	-	
11.	Kauno	Noreikiškės	Noreikiškių aprūpinimo šiluma sistema	VDV	0,90	1,95	-	-	-	-	
12.	Kauno	Raudondvaris	Raudondvario aprūpinimo šiluma sistema	VDV	0,30	0,65	-	=	=	-	
13.	Kauno	Birštonas	Birštono miesto aprūpinimo šiluma sistema	VDV	-	-	0,79	1,71	=	-	
14.	Kauno	Jonava	Jonavos miesto aprūpinimo šiluma sistema	VDV/DT	3,83	8,28	-	10	-	1774	
15.	Kauno	Rukla	Ruklos aprūpinimo šiluma sistema	VDV			0,33	0,71	-	-	
16.	Kauno	Kaišiadorys	Kaišiadorių miesto aprūpinimo šiluma sistema	VDV	-	-	3,17	6,86		-	
17.	Kauno	Kėdainiai	Kėdainių miesto aprūpinimo šiluma sistema	VDV	0,34	0,74	_	_	-	-	

• • •

68.	Vilniaus	Eišiškės	Eišiškių aprūpinimo šiluma sistema	VDV	142	4	0,35	0,76	=	- 22
69.	Vilniaus	Šalčininkai	Šalčininkų aprūpinimo šiluma sistema	VDV	0,96	2,08	-	-	•	-
70.	Vilniaus	Širvintai	Širvintų aprūpinimo šiluma sistema	VDV	0,83	1,79	-	-		
71.	Vilniaus	Pabradė	Penktoji Pabradės aprūpinimo šiluma sistema	VDV	-	-	0,20	0,44	-	-
72.	Vilniaus	Pabradė	Septintoji Pabradės aprūpinimo šiluma sistema	VDV	-	-	0,16	0,35	=	8227
73.	Vilniaus	Trakai	Trakų miesto aprūpinimo šiluma sistema	VDV	(-2		0,75	1,62	2	
74.	Vilniaus	Lentvaris	Lentvario aprūpinimo šiluma sistema	VDV	-	-	0,58	1,26	-	-
75.	Vilniaus	Ukmergė	Pirmoji Ukmergės miesto aprūpinimo šiluma sistema	VDV	1,15	2,49	-	-	-	-
76.	Vilniaus	Ukmergė	Antroji Ukmergės miesto aprūpinimo šiluma sistema	VDV	0,96	2,08		-	-	-
77.	Vilniaus	Ukmergė	Trečioji Ukmergės miesto aprūpinimo šiluma sistema	VDV	12	=	=	-	1,08	2,34
				Viso:	35,37	72,40	781,11	1729,25	7,80	16,85

UAB "Termosistemų projektai"

Благодарю за внимание

3AO "Termosistemų projektai"

Адрес: Draugystes g. 19,

51230 Kaunas, LITHUANIA

Тел: +370-37-207222

Fax: +370-37-207137

E-mail: tsp@tsp.lt

www.tsp.lt