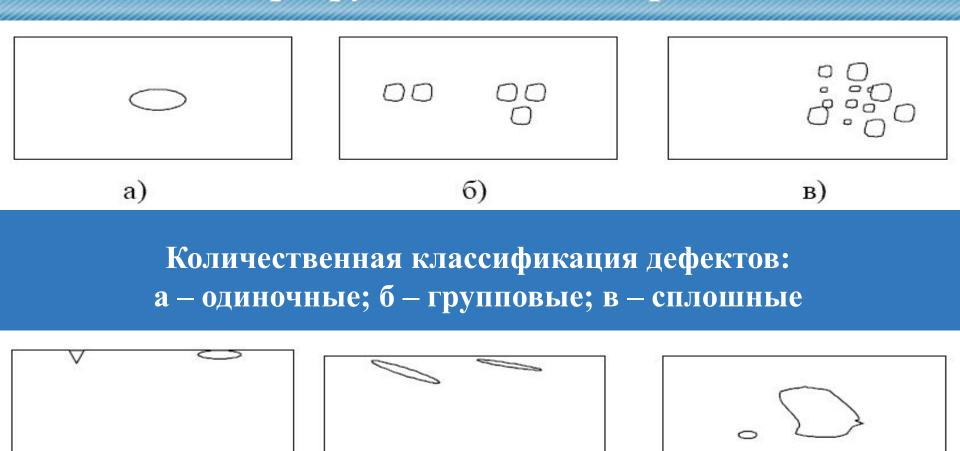
# ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ В ОБЛАСТИ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ


Неразрушающий контроль (НК) - область науки и техники, охватывающая исследования физических принципов, разработку, совершенствование и применение методов, средств и технологий технического контроля объектов, не разрушающего и не ухудшающего их пригодность к эксплуатации.

Неразрушающие методы контроля (дефектоскопия) —методы контроля материалов (изделий), используемые для обнаружения нарушения сплошности или однородности макроструктуры, отклонений химического состава (дефектов) и других целей, не требующих разрушения образцов материала и/или изделия в целом.

<u>Дефект</u> – каждое отдельное несоответствие продукции требованиям, установленным нормативной документацией (ГОСТ, ОСТ, ТУ и т.д.).

#### К несоответствиям относятся:

- нарушение сплошности материалов и деталей;
- неоднородность состава материала:
  - наличие включений,
  - изменение химического состава,
  - наличие других фаз материала, отличных от основной фазы и др.
- любые отклонения параметров материалов, деталей и изделий от заданных (размеры, качество обработки поверхности, влаго- и теплостойкость и т.д.



Классификация дефектов по положению в объекте контроля: а — поверхностные; б — подповерхностные; в — объемные

**6**)

a)

Основные требования, предъявляемые к неразрушающим методам контроля, или дефектоскопии:

- возможность осуществления контроля на всех стадиях изготовления, при эксплуатации и при ремонте изделий;
- возможность контроля качества продукции по большинству заданных параметров;
- согласованность времени, затрачиваемого на контроль, со временем работы другого технологического оборудования;

высокая достоверность результатов контроля;

- возможность механизации и автоматизации контроля технологических процессов, а также управления ими с использованием сигналов, выдаваемых средствами контроля;
- высокая надёжность дефектоскопической аппаратуры и возможность использования её в различных условиях;
- простота методик контроля, техническая доступность средств контроля в условиях производства, ремонта и эксплуатации.

#### Перечень объектов контроля

- 1. Объекты котлонадзора.
- 2. Системы газоснабжения (газораспределения).
- 3. Подъемные сооружения.
- 4. Объекты горнорудной промышленности.
- 5. Объекты угольной промышленности.
- 6. Оборудование нефтяной и газовой промышленности.
- 7. Оборудование металлургической промышленности.
- 8. Оборудование взрывопожароопасных и химически опасных производств.
- 9. Объекты железнодорожного транспорта.
- 10. Объекты хранения и переработки зерна.
- 11. Здания и сооружения (строительные объекты).
- 12. Оборудование электроэнергетики.

#### Основные виды НК

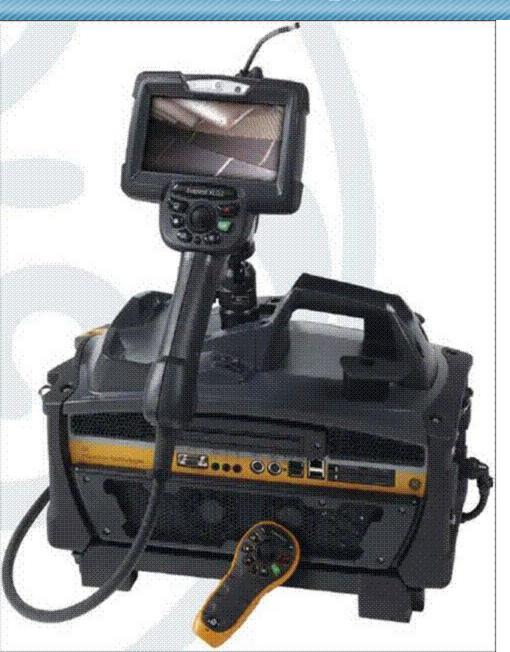
- 1. оптический;
- 2. проникающими веществами;
- 3. тепловой;
- 4. магнитный;
- 5. электрический;
- 6. вихретоковый;
- 7. акустический;
- 8. радиационный;
- 9. радиоволновый.

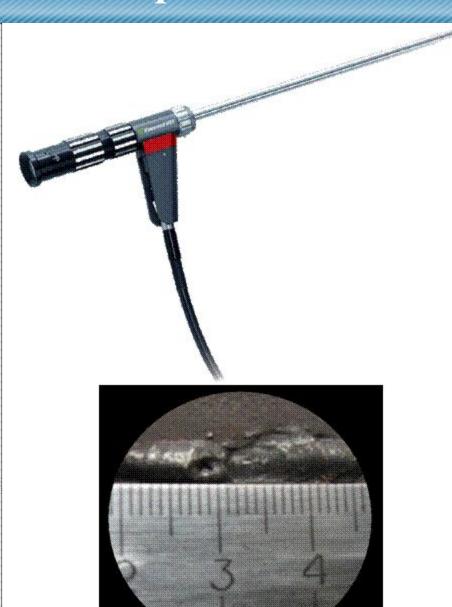
#### Оптический вид НК

Основан на наблюдении или регистрации параметров оптического излучения, взаимодействующего с контролируемым объектом.



#### Методы оптического вида НК


По характеру взаимодействия с ОК:


- прошедшего излучения;
- отраженного излучения;
- рассеянного излучения;
- индуцированного излучения (люминесценция).

По способу получения первичной информации:

- органолептический визуальный контроль;
- визуально-оптический контроль.





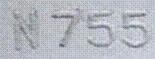


#### НК проникающими веществами

Основан на проникновении специальных веществ в полости дефектов контролируемого объекта.



#### Методы


Капиллярные – основаны на капиллярном проникновении в полость дефекта индикаторной жидкости

Течеискания — основаны на капиллярном прохождении индикаторной жидкости через сквозной дефект

По способу получения первичной информации:

- ахроматический;
- цветной;
- люминесцентный.





#### Тепловой вид НК

Основан на регистрации изменений тепловых или температурных полей контролируемых объектов

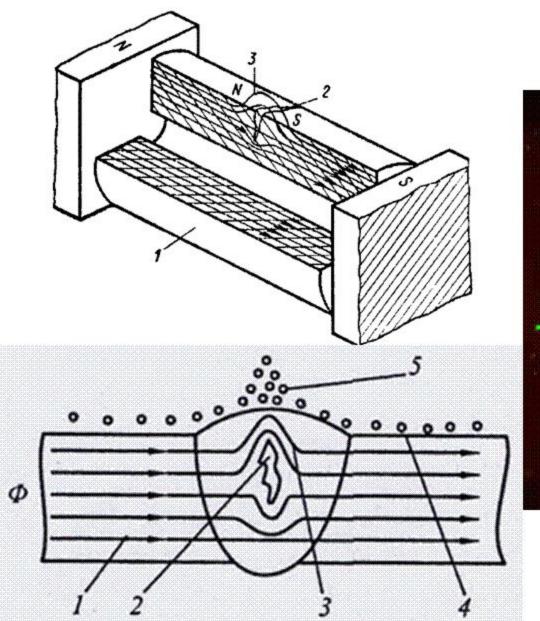


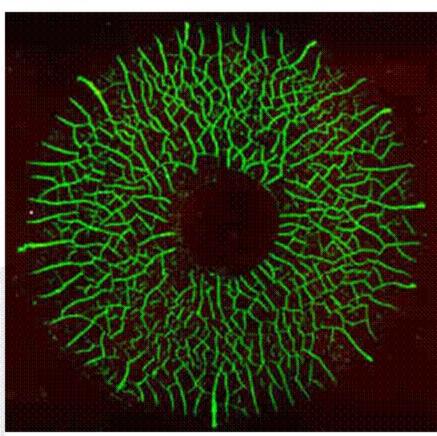
Методы теплового вида НК

По характеру взаимодействия поля с ОК:

Пассивный или собственного излучения— на объект не воздействуют внешним источником энергии

Активный — объект нагревают или охлаждают от внешнего источника контактным или бесконтактным способом, стационарным или импульсным источником теплоты и измеряют температуру или тепловой поток с той же или с другой стороны объекта




#### Магнитный вид НК

Основан на регистрации магнитных полей рассеяния, возникающих над дефектами, или на определении магнитных свойств контролируемых изделий









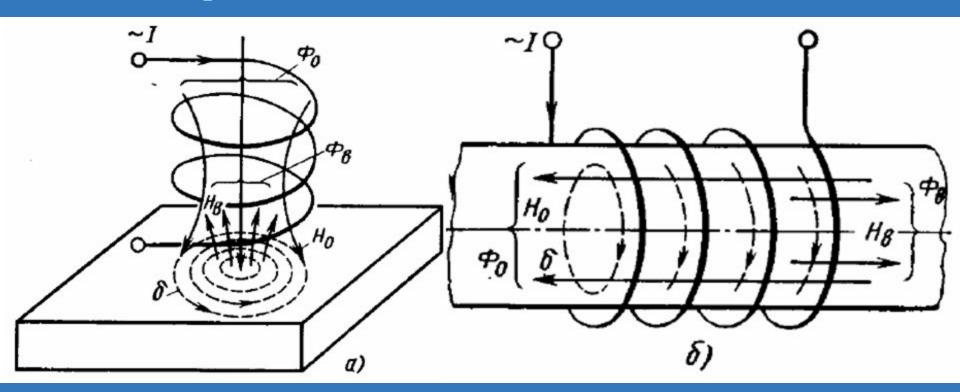
#### Электрический вид НК

Основан на регистрации параметров электрического поля, взаимодействующего с контролируемым объектом (электрический метод), или поля, возникающего контролируемом объекте результате внешнего воздействия (термоэлектрический трибоэлектрический методы)



#### Вихретоковый вид НК

Основан на анализе взаимодействия электромагнитного поля вихретокового преобразователя электромагнитным вихревых полем токов, наводимых в контролируемом объекте




Применяется только для контроля изделий из электропроводящих материалов

Интенсивность и распределение вихревых токов в ОК зависят:

- от геометрических размеров объекта;
- от электрических и магнитных свойств материала объекта;
- от наличия в материале несплошностей;
- от взаимного расположения преобразователя и объекта.

#### Методы вихретокового вида НК:



Прохождения

Отраженного излучения

#### Акустический вид НК

Основан на регистрации параметров упругих волн, возникающих или возбуждаемых в объекте



Методы акустического вида НК

По используемой частоте:

Ультразвуковые методы — используют упругие волны ультразвукового диапазона (с частотой колебаний выше 20 кГц). Эти волны возбуждаются и принимаются, как правило, пьезопреобразователями. Используют жидкостный контакт.

Методы, использующие звуковые частоты. Кроме пьезопреобразователей применяют ударное воздействие, а для приема — микрофоны.

Методы акустического вида НК

По характеру взаимодействия с ОК:

<u>Пассивные методы</u> – регистрируются упругие волны, возникающие в самом объекте

Вибрационный — регистрируется вибрация определенных узлов механизма и оценивается работоспособность этих узлов.



Методы акустического вида НК

По характеру взаимодействия с ОК:

Пассивные методы – регистрируются упругие волны,

возникающие в самом объекте

Вибрационный — регистрируется вибрация определенных узлов механизма и оценивается работоспособность этих узлов.



Методы акустического вида НК

По характеру взаимодействия с ОК:

Пассивные методы – регистрируются упругие волны,

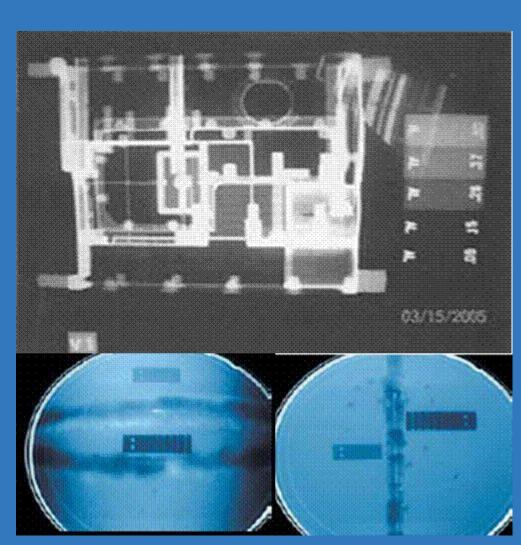
возникающие в самом объекте

Акустической эмиссии — использует упругие волны ультразвукового диапазона, появляющиеся в результате перестройки структуры материала, вызываемой: движением групп дислокаций, возникновением и развитием трещин.



Методы акустического вида НК

По характеру взаимодействия с ОК:


Активные методы

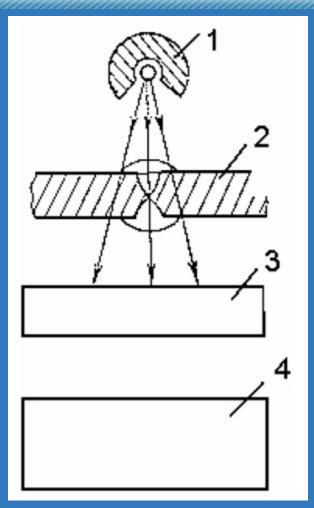
Ультразвуковой — основан на использовании результатов измерения интенсивности пропускаемого контролируемым образцом или отраженного им ультразвукового сигнала



#### Радиационный вид НК

Основан на регистрации и анализе проникающего ионизирующего излучения после взаимодействия его с контролируемым объектом

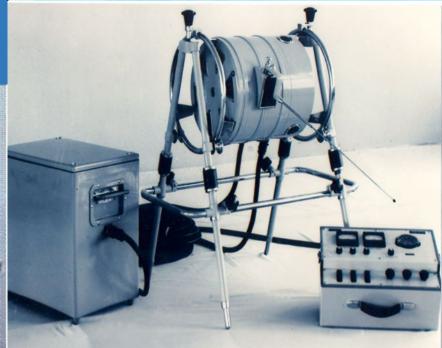



Методы радиационного вида НК

По характеру взаимодействия с ОК:

**Метод прохождения Метод отражения** 

В зависимости от природы ионизирующего излучения:


- рентгеновский,
- <u> гамма, </u>
- <u>бета (поток электронов),</u>
- <u> нейтронный</u>
- <u>жесткое тормозное</u> (от ускорителя электронов бетатрона, линейного ускорителя)



Бетатрон - индукционный циклический ускоритель электронов, в котором энергия частиц увеличивается вихревым электрическим полем, создаваемым изменяющимся магнитным потоком, проходящим внутри орбиты частиц.









В операционном блоке НИИ онкологии установлен малогабаритный бетатрон МИБ-6Э, созданный в НИИ интроскопии при ТПУ.

# Основные характеристики некоторых радионуклидов, применяемых в дефектоскопии

| Радионуклид                     | Период      | Выход ү-квантов | Энергия       | Энергия            |
|---------------------------------|-------------|-----------------|---------------|--------------------|
|                                 | полураспада | на распад, %    | γ–кванта, МэВ | β-частиц           |
| <sup>27</sup> Co <sub>60</sub>  | 5,25 года   | $10^{-3} - 1,0$ | 1,17 – 2,5    | 0,318 МэВ          |
| <sup>55</sup> Cs <sub>137</sub> | 11000 дней  | 100             | 0,661         | 0,52 — 1,17<br>МэВ |
| $^{34}Se_{75}$                  | 120,4 дня   | 1,1 – 13        | 0,066 - 0,572 |                    |

#### Методы радиационного вида НК

По используемому приемнику излучения:

- радиографический метод
  (приемник излучения рентгеновская пленка),
- радиометрический метод
  (приемник излучения сканирующий
  сцинтилляционный счетчик частиц и фотонов),
- радиоскопический метод (приемник излучения флюоресцирующий экран с последующим преобразованием изображения в телевизионное).

Методы радиационного вида НК

По используемому приемнику излучения:



#### Радиоволновой вид НК

Основан на регистрации изменений параметров электромагнитных волн радиодиапазона, взаимодействующих с контролируемым объектом.

Применяют волны сверхвысокочастотного диапазона (СВЧ) длиной 1–100 мм.

Методы радиационного вида НК: По характеру взаимодействия с объектом контроля:

- прошедшего излучения;
- отраженного излучения;
- рассеянного излучения;
- резонансный метод.

#### Эффективность методов НК

- 1. Многие методы применимы для контроля только определенных типов материалов.
- 2. По опасности для обслуживающего персонала выделяются радиационные и капиллярные методы.
- 3. С точки зрения автоматизации контроля наиболее благоприятными являются: вихретоковый; магнитный; радиационный виды и некоторые методы тепловых методов НК.
- 4. По стоимости выполнения контроля к наиболее дорогим относят методы радиографические и течеискания.
- 5. Сопоставлять различные методы контроля можно только в тех условиях, когда для контроля данного типа дефекта в данном ОК возможно применение нескольких методов НК.

#### Hongonyilidigilili valimnatk

n.

Радиоволновой

Оптический

Тепповой

n

O.

n

O.

n

n

n

| перизрушин                    | uquu i       | <i>XUH</i>   | mp           |           |             |
|-------------------------------|--------------|--------------|--------------|-----------|-------------|
|                               | Вид НК       |              |              |           |             |
| Объекты контроля              | Радиационъвй | Акустический | Вихретоковый | Матнитный | Капеплярный |
| Неферромагнитные материалы    |              |              |              | 55 5      | ia .        |
| Проволока диаметром 1 — 14 мм | 4            | 5            | 5            | 0         | 0           |

Прутки диаметром 30 - 100 мм

Трубы диаметром 30 – 156 мм

Метаплургические заготовки

Многоспойные материалы

Бетон, железобетон

Стеклоппастики

Прутки диаметром 30 - 100 мм

Отливки

Отливки

Резина

Керамика

Сварные

Резьбовые

Паяные

Листы, плиты толщиной 0,1 - 3,9 мм

Трубы сварные диаметром 30 – 156 мм

Листы, плиты толциной 0,1 – 3,9 мм

Ферромагинтные материалы

Диэлектрики

Соединения

#### Преимущества неразрушающих методов контроля

- 1. Испытания проводятся непосредственно на изделиях, которые будут применяться в рабочих условиях.
- 2. Испытания можно проводить на любой детали, предназначенной для работы в реальных условиях.
- 3. Испытания можно проводить на целой детали или на всех ее опасных участках.
- 4. Могут быть проведены испытания многими НМК, каждый из которых чувствителен к различным свойствам или частям материала или детали.
- 5. Неразрушающие методы контроля часто можно применять к детали в рабочих условиях, без прекращения работы.

#### Преимущества неразрушающих методов контроля

- 6. НМК позволяют применить повторный контроль данных деталей в течение любого периода времени.
- 7. При НМК детали, изготовленные из дорогостоящего материала, не выходят из строя при контроле.
- 8. При НМК требуется небольшая (или совсем не требуется) предварительная обработка образцов.
- 9. Большинство НМК кратковременны и требуют меньшей затраты человекочасов, чем типичные разрушающие методы испытаний.

#### Недостатки неразрушающих методов контроля

- 1. НК обычно включает в себя косвенные измерения свойств, не имеющих непосредственного значения при эксплуатации.
- 2. Обычно требуются калибровка (настройка) на специальных (контрольных) образцах и исследование рабочих условий для интерпретации результатов НК.

#### Вопросы для самопроверки

- 1. Назовите основные виды НМК.
- 2. Каковы требования, предъявляемые к НМК?
- 3. В чем, на ваш взгляд, состоит основная задача системы контроля качества продукции?
- 4. Дайте определения основных критериев эффективности НМК.
- 5. Перечислите основные преимущества/недостатки НМК.

### Спасибо за внимание!