Проверка знаний:

- 1. Основные положения хромосомной теории
- 2. Гемизиготные признаки
- 3. Каков процент возникновения здоровых детей (мальчиков и девочек) у пары, в которой мать носитель гена гемофилии, а отец дальтоник

Наследственная и ненаследственная и изменчивость

Типы и виды изменчивости. Причины изменчивости.

Признаки организма

качественные

(их можно описать): окраска (цвет); форма; группа крови; жирность молока и т.д.

количественные

(их можно измерить): длина (рост); масса; объем; количество семян и т.д.

 Какие признаки (качественные или количественные) в большей степени

подвеј

Будут следун

Одина призна Почем

ІТЬСЯ В

/?

ости вида?

Изменчивость

Наследственная

Генотипическая

Неопределенная

Комбинативная

Мутационная

Ненаследственная

Фенотипическая

Определенная

Модификационная

Закономерности изменчивости

Наследственная	Ненаследственная
Изменение генотипа	Изменение фенотипа
Наследуется	Не наследуются
Индивидуальная	Массовая
Независимы, вредны или полезны	Приспособительны
Не адекватны среде	Адекватны среде
Приводит к образованию комбинаций и мутаций	Приводит к образованию модификаций
Причины – ионизирующее излучение, токсические	Причины – климатические, пищевые и др. изменения
вещества и др.	

Комбинативная наследственная изменчивость

Возможности возникновения комбинаций:

- Профаза I мейоза кроссинговер;
- 2) Анафаза I независимое расхождение гомологичных хромосом;
- 3) Анафаза II независимое расхождение хроматид
- 4) Случайное слияние гамет

Мутационная наследственная изменчивость

Генные (точечные) мутации — изменения последовательности нуклеотидов в гене (гемофилия, серповидноклеточная анемия)

Хромосомные мутации — значительные изменения в структуре хромосом, затрагивающие несколько генов

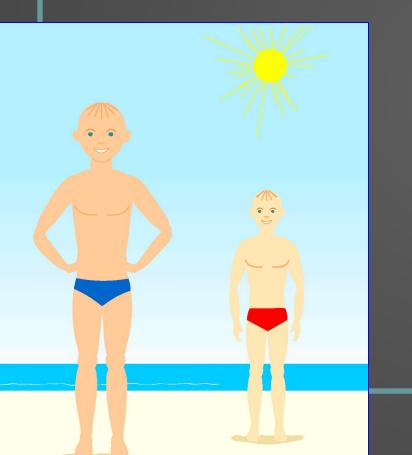
- Утрата отрыв концевой части хромосомы
- *Делеция* потеря средней части хромосомы
- Дупликация удвоение какого-либо участка хромосомы
- Инверсия «выстригание» участка хромосомы, переворот на 180о и вставление на место

Геномные – изменения в кариотипе (в количестве хромосом

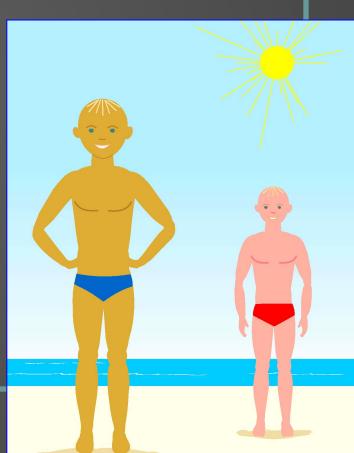
- Полиплоидия кратное увеличение генома (чаще у растений)
- Анеуплоидия изменение на 1, 2 хромосомы (синдром Дауна три 21 хромосомы)

Написать к следующему уроку и кратко представить

Реферат


- «Выявление источников мутагенов в окружающей среде (косвенно)» и
- «Оценка возможных последствий их влияния на организм»

Модификационная ненаследственная изменчивость


Изменение фенотипа как реакция на изменение условий среды, происходящее в пределах нормы реакции

Норма реакции

пределы, в которых может изменяться значение признака у особи с данным генотипом

Имеет ли модификационная изменчивость какое-либо значение в природе и жизни организмов?

 Модификационная изменчивость обеспечивает организмам

Плотолострилехациповекополейорживущения егеся раванразвыворах эпоюхистерсь босувуюня веренразличення левеевде кортонновы время горрымех бое еврусрой раемтв в суповека увеличивается.

Почему?

Листья (цветки, плоды), выросшие на одном растении, редко бывают одного размера

Лабораторная работа

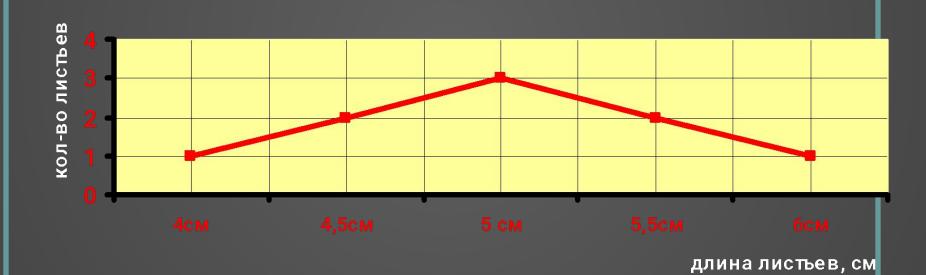
«Статистические закономерности модификационной изменчивости»

Цель работы: изучить закономерности изменчивости длины листьев растения

- а) определить пределы изменчивости (норму реакции) изучаемого признака;
- б) определить наиболее часто встречающееся значение признака по графику (его вершину);
- в) вычислить среднее значение признака, соотнести его с вершиной графика (кривой) изменчивости признака

Оборудование: линейки, гербарии листьев растений

1.Таблица изменчивости длины листьев


Длина, см	min		max
Кол-во листьев с			
такой длиной			

2.Норма реакции изучаемого признака:

Длина листьев ____ колеблется в пределах от *(min)* до *(max)*

3. Используя данные таблицы изменчивости признака, построить график (вариационную кривую):

4. Определить среднее значение изучаемого признака:

Средняя длина = <u>сумма всех длин</u> кол-во измеренных листьев


Как соотносится среднее значение длины листьев с вершиной графика кривой изменчивости?

5. Вывод (исходя из целей)

Таблица с данными измерений:

Длина, см	4	4.5	5	5.5	6
Кол-во листьев с такой длиной	1	2	3	2	1

Кривая изменчивости длины листьев

Средняя длина листьев
$$M = \frac{\sum_{i}^{N} (v \cdot \rho_{i})}{\kappa_{i}} = 5$$
см

Спасибо за внимание!

