
Геометрические фигуры и тела

Презентацию подготовила Габова Марина Анатольевна канд. пед. наук, доцент кафедры ПМДО КГПИ

Основные понятия геометрии

- Точка неопределяемое понятие геометрии, элемент пространства. Считается, что точка не имеет ни длины, ни ширины, ни площади.
- Прямая основное неопределяемое понятие, подмножество пространства.
- Плоскость основное неопределяемое понятие, специальное подмножество пространства.
- Геометрическая фигура множество точек.

Свойства и взаимосвязи основных понятий описываются с помощью определенной группы аксиом.

Через основные понятия вводятся определения всех других геометрических понятий.

На основании аксиом и определений доказывают теоремы.

Краткая характеристика основных понятий планиметрии

- Планиметрия раздел геометрии, изучающий свойства фигур, лежащих в одной плоскости.
- Если все точки фигуры принадлежат одной плоскости, то фигура называется **плоской.**
- Линия неопределяемое понятие геометрии.
- *Прямую линию* удобно моделировать, сгибая любой лист бумаги. Основное свойство прямой линии: прямая линия бесконечна.
- Кривую линию удобно моделировать из шнура. Кривая линия также бесконечна (если она не замкнутая).
- Линии могут быть замкнутыми и незамкнутыми.
- Линии могут быть расположены на плоскости и в пространстве.

Основные взаимоотношения точки и линии:

- 1. Через одну точку можно провести множество прямых.
- 2. Через одну точку можно провести множество кривых.
- 3. Через две точки можно провести только одну прямую.
- 4. Через две точки можно провести множество кривых.

Луч и отрезок

Луч — часть прямой, ограниченная с одной стороны. Луч имеет начало, но не имеет конца. Луч бесконечен. Точка А — начало луча АС.

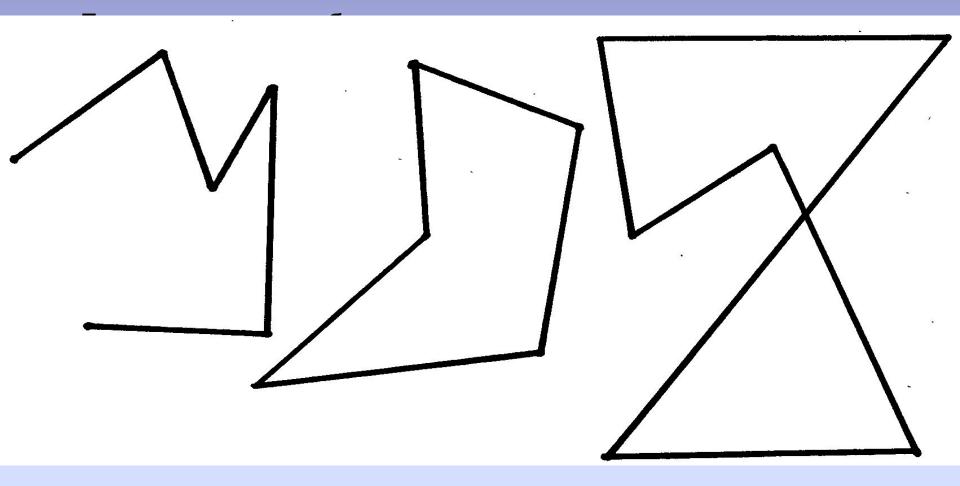
Лучи могут быть:

- сонаправленными
- противоположно направленными.
- **Отрезок** часть прямой, заключенная между двумя точками. Множество, состоящее из всех точек прямой, лежащих между двумя данными точками, включая эти точки.
- Отрезок имеет определенную длину, которую можно измерить.
- Инструментом для измерения длин отрезков является линейка.

Углы

- Угол это часть плоскости, ограниченная двумя лучами, имеющими общее начало.
- Лучи, образующие угол, называются сторонами угла, а их общее начало — вершиной угла.
- Множество всех точек плоскости между сторонами угла внутренняя плоскость угла.
- Углы равны, если при наложении их стороны совпадают.

Виды углов

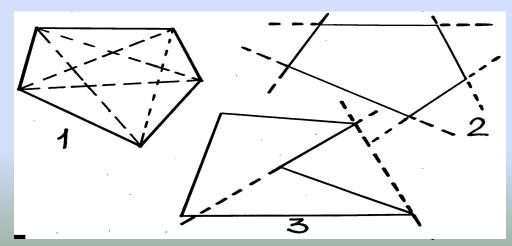

По величине (градусной мере)

- •Угол развернутый если лучи, выходящие из одной точки, лежат на одной прямой.
- •Прямой угол 90°
- •Тупой угол больше прямого
- •Острый угол меньше прямого

<u>По расположению</u>

- •Два угла, имеющих общую сторону и вершину, являются смежными, если две другие их стороны лежат на одной прямой.
- •Два угла называются вертикальными, если стороны одного являются дополнительными полупрямыми сторон другого.

Ломаная линия



Многоугольники

- Многоугольник плоская фигура, ограниченная простой замкнутой ломаной.
- Сама ломаная граница многоугольника, звенья стороны многоугольника, точки пересечения звеньев вершины многоугольника. Число вершин многоугольника равно числу его сторон.
- Многоугольник выпуклый, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону.
- Диагональ многоугольника отрезок, соединяющий две несоседние вершины многоугольника.

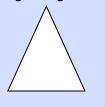
• Многоугольник **правильный**, если все его стороны и все углы равны

между собой.

Треугольники

Треугольник — многоугольник с тремя углами и сторонами, ограничен ломаной из трех звеньев. Фигура, состоящая из трех точек, не лежащих на одной прямой, и трех попарно соединяющих их отрезков.

Виды треугольников в зависимости от Виды треугольников в длин сторон.


Разносторонние - стороны разной длины. **Равнобедренные -** равны две стороны. **Равносторонние** - равны все три

стороны.

зависимости от содержащихся в них углов

Остроугольные - все углы острые. **Прямоугольные -** один прямой угол. **Тупоугольные -** один тупой угол.

В треугольнике не может быть больше одного прямого или тупого угла.

Равносторонний треугольник может быть только остроугольным.

Прямоугольный и тупоугольный треугольники могут быть равнобедренными.

Разносторонними могут быть и остроугольный, и прямоугольный, и тупоугольный треугольники.

Четырехугольники

Четырехугольник — ограничен ломаной из четырех звеньев, имеет четыре стороны и четыре вершины.

Фигура, состоящая из четырех точек и четырех последовательно соединяющих их отрезков, при этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не пересекаются.

Параллелограмм -

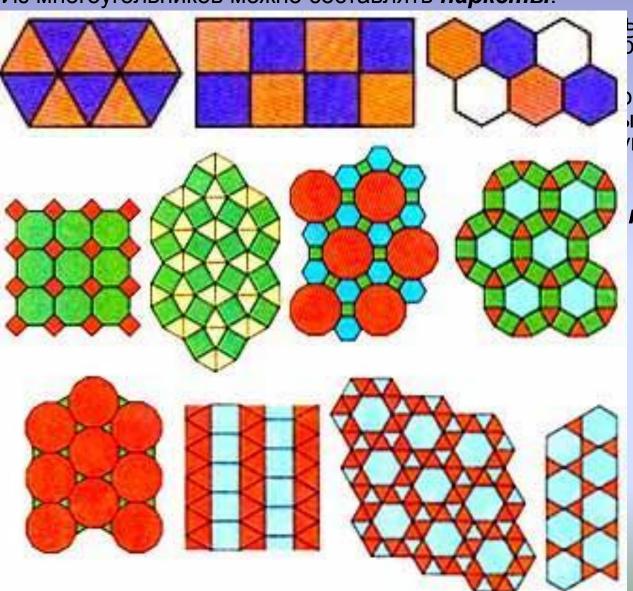
четырехугольник, противоположные стороны которого попарно параллельны.

Ромб — параллелограмм, все стороны которого равны.

Прямоугольник —

параллелограмм, у которого все углы прямые.

Квадрат -


прямоугольник, у которого все стороны равны.

Трапеция -

четырехугольник, две стороны которого параллельны, а две другие не параллельны.

Паркеты из многоугольников

Из многоугольников можно составлять *паркеты*.

ь, без просветов и двойных бщую сторону, либо общую

огоугольников, в котором и одним и тем же способом и одних и

Всего возможны **11 правильных паркетов**:

(3,3,3,3,3,3)

(4,4,4,4)

(6,6,6)

(8,4,8)

(4,3,3,4,3)

(12,6,4)

(6,4,3,4)

(12,3,12)

(4,3,3,3,4)

(6,3,6,3)

10 (6,3,3,3,3)

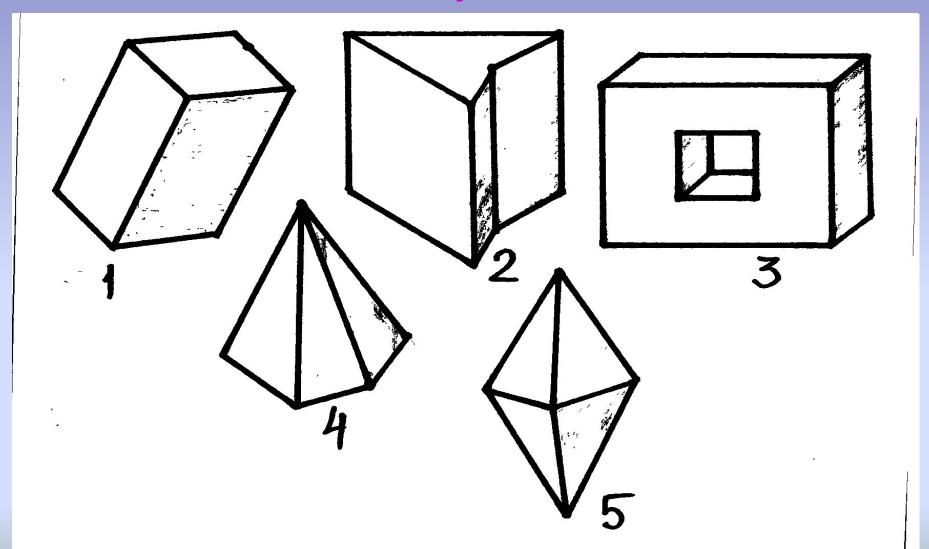
Окружность и круг

Окружность — это замкнутая кривая линия, состоящая из точек, находящихся на одинаковом расстоянии от заданной точки О. Множество всех точек плоскости, находящихся на одном и том же расстоянии от данной точки плоскости.

Точка О называется *центром* окружности (от лат. «острый конец

палочки»).

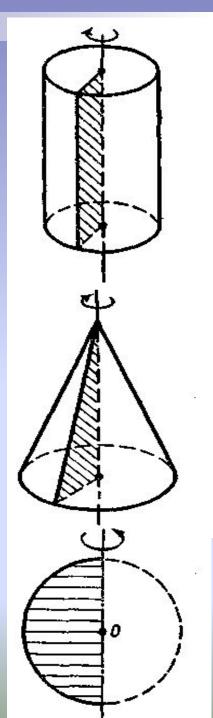
Радиус — (от лат отрезок, соединяющий центр окружности ЧКОЙ. Хорда окруд которого принадлежат окружно Диаметр речник») отрезок (х р окружности (круга) и ЧКИ. диаметр Диаметр **Круг** — час[\] окружностью. Множество всех **⊅ых от некоторой данной точки** точек плоб плоскости (анного. Граница круга — ок


Сектор – часть круга между двумя его радиусами.

Сегмент – часть круга, ограниченная хордой и стягиваемой ею дугой.

Краткая характеристика основных понятий стереометрии

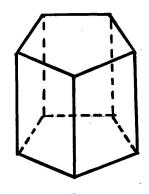
- **Стереометрия** раздел геометрии, который изучает свойства всех фигур пространства.
- Объемные фигуры в геометрии чаще называют телами.
- Геометрическое тело ограниченная связная фигура в пространстве, которая содержит все свои граничные точки.
- Фигура ограниченная, если ее можно заключить в какую-либо сферу.
- Фигура связная, если любые две ее точки можно соединить непрерывной линией, целиком принадлежащей фигуре.

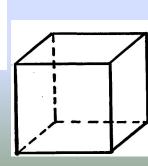

Многогранники

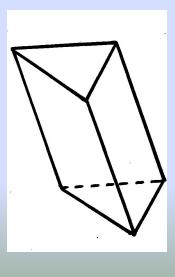
Тела вращения

- **Тела вращения** образуются при вращении плоской фигуры вокруг не пересекающей ее оси, имеют гладкие криволинейные поверхности.
- Прямой круговой цилиндр (гр. «валик, каток») получается вращением прямоугольника вокруг одной из сторон.

- Прямой круговой конус (лат. «шишка») вращением прямоугольного треугольника вокруг катета.
- Шар вращением полукруга вокруг диаметра.

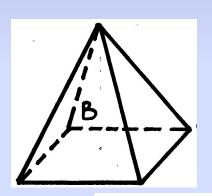

Призмы

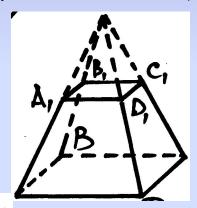

- Призма (гр. «отпиленный кусочек») многогранник, две грани которого равные многоугольники, лежащие в параллельных плоскостях, а остальные грани параллелограммы.
- Если боковые ребра перпендикулярны плоскостям оснований, то призма прямая; если нет наклонная.
- Если в основании прямой призмы лежит правильный многоугольник, то призма

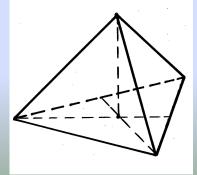

 правильная.
- Параллелепипед призма, основания которой параллелограммы.
- Прямоугольный параллелепипед прямой параллелепипед, основание которого – прямоугольник. Все грани – прямоугольники.
- Куб прямоугольный параллелепипед, все ребра которого равны. Все грани квадраты.

Построение изображения призмы:

- строят основание (нижнее или верхнее многоугольник);
- 2. из вершин многоугольника строят параллельные прямые;
- 3. на прямых откладывают равные отрезки (высота призмы);
- 4. соединяют полученные точки (концы отрезков), получая второе основание.







Пирамиды

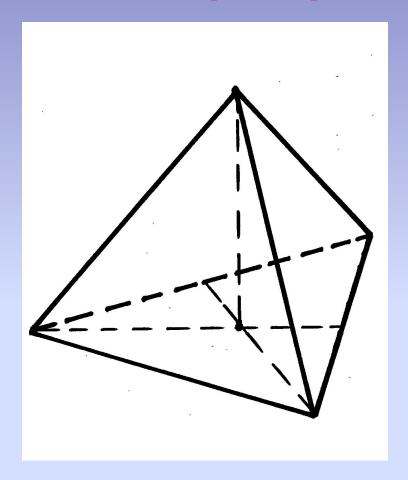
- Пирамида многогранник, одна из граней которого произвольный многоугольник, а остальные треугольники, имеющие общую вершину.
- Пирамида правильная, если в ее основании правильный многоугольник, а основание высоты совпадает с центром основания.
- Высота отрезок перпендикуляра, проведенный из вершины пирамиды к плоскости ее основания.
- Усеченная пирамида часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию.

Построение изображения пирамиды (на примере правильной пирамиды):

- 1. строят основание, находят его центр;
- строят высоту, проводя отрезок из центра основания, отмечают на нем вершину пирамиды;
- 3. соединяют отрезками вершины основания с вершиной пирамиды.

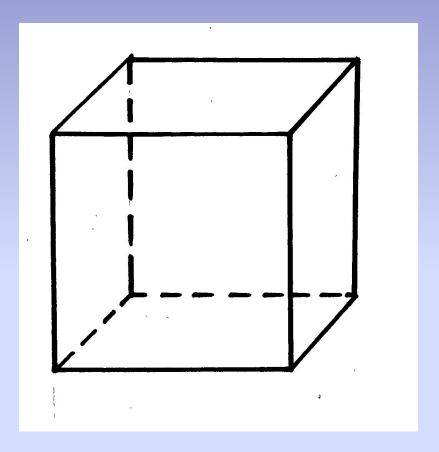
Правильные многогранники

Многогранник правильный, если все его грани – правильные равные многоугольники и все двугранные углы равны.


Свойства правильных многогранников:

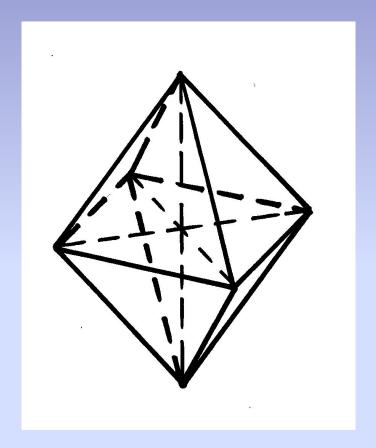
- все ребра равны;
- все плоские углы равны;
- все многогранные углы равны;
- все многогранные углы имеют одно и то же число граней, и в каждой вершине сходится одно и то же число ребер.

Всего существует 5 видов правильных многогранников:

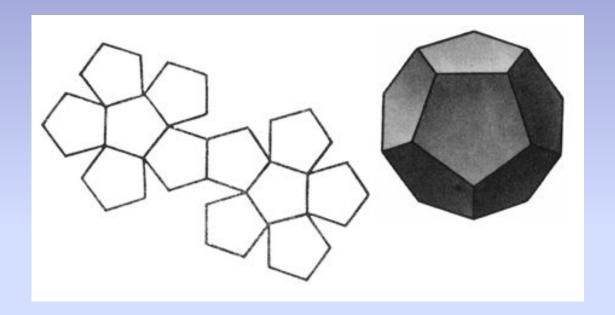

Многогран- ник	Число рёбер при вершине	Число рёбер одной грани	Число граней	Число рёбер	Число вершин
Тетраэдр	3	3	4	6	4
Гексаэдр (куб)	3	4	6	12	8
Октаэдр	4	3	8	12	6
Додекаэдр	3	5	12	30	20
Икосаэдр	5	3	20	30	12

Тетраэдр

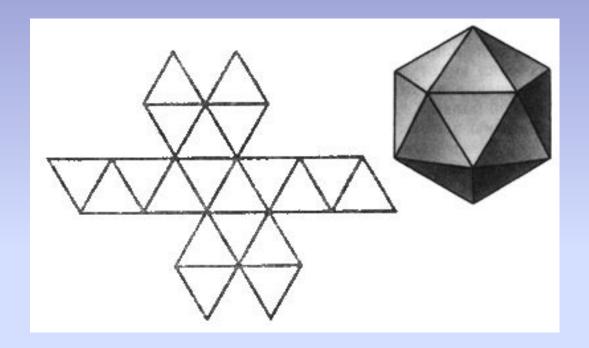
Правильная треугольная пирамида


Гексаэдр

Правильный шестигранник, правильная четырехугольная призма, прямоугольный параллелепипед с равными ребрами, куб.


19

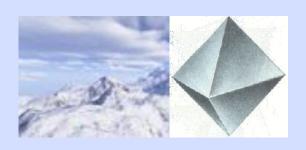
Октаэдр


Правильный восьмигранник, бипирамида четырехугольная

Додекаэдр

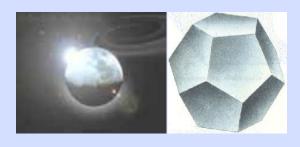
Правильный двенадцатигранник

Икосаэдр


Правильный двадцатигранник

Правильные многогранники

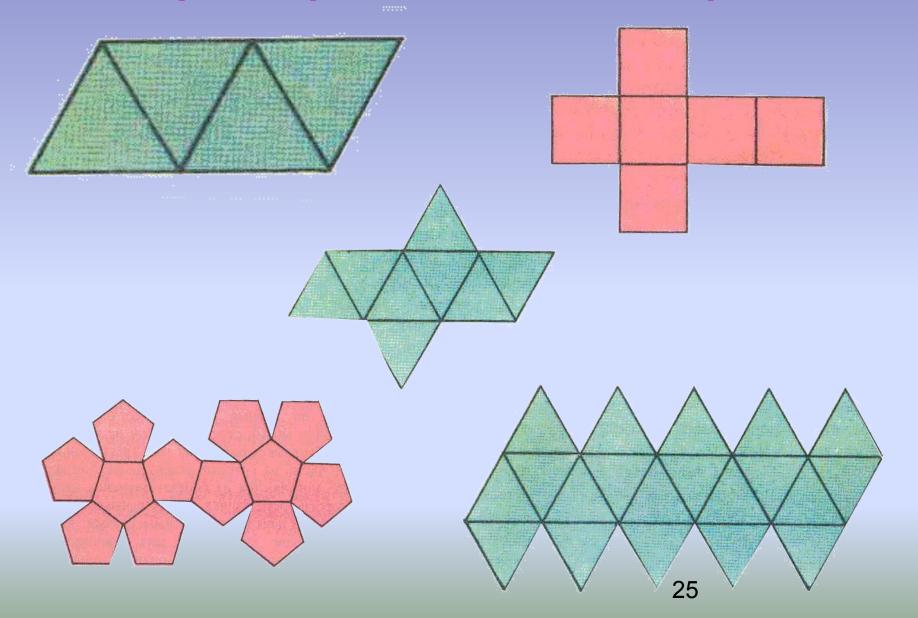
Пифагорейцы считали правильные многогранники божественными фигурами. Праосновам бытия приписывалась форма правильных многогранников.



Учение пифагорейцев изложил в своих трудах Платон. С тех пор правильные многогранники называют платоновыми телами. Евклид доказал, что других правильных многогранников не существует.

23

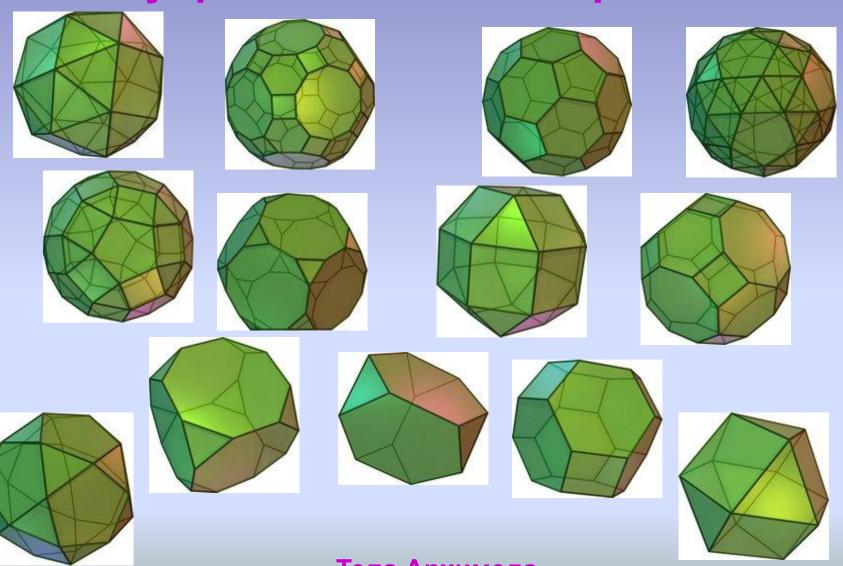
Почему их только 5?


Сумма плоских углов выпуклого многогранного угла меньше 360°.

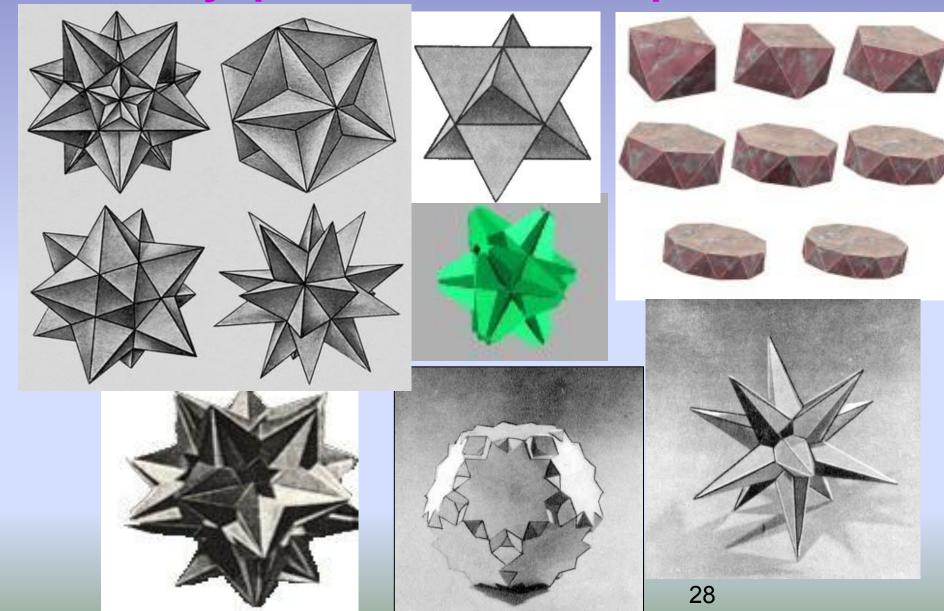
Поэтому в одной вершине может сходиться:

правильных треугольников

- квадратов 3 (270°) куб
- пятиугольников 3 (324°) додекаэдр.


Развертки правильных многогранников

Полуправильные многогранники

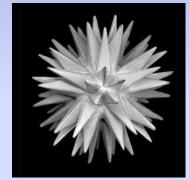

- Архимед открыл и описал 13 видов полуправильных многогранников, которые называют телами Архимеда.
- Все многогранные углы их равны, а грани – разноименные правильные многоугольники.
- Полуправильные многогранники можно получить из правильных операцией усечения углов.

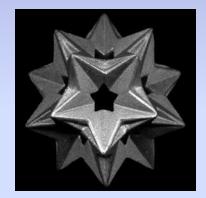
Полуправильные многогранники

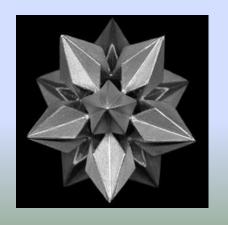
Тела Архимеда

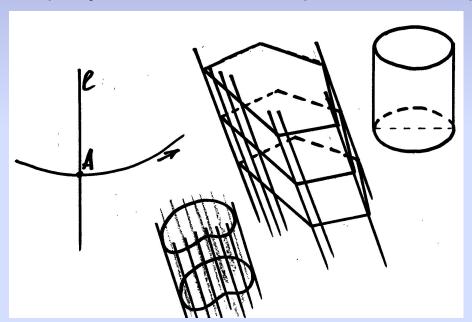
Полуправильные многогранники

Звездчатые многогранники









Цилиндр и призма

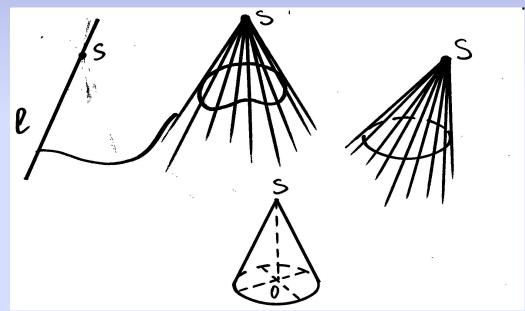
Пусть дана некоторая прямая (образующая), которая перемещается в пространстве параллельно самой себе. Выберем на прямой некоторую точку. Эта точка, передвигаясь вместе с прямой в пространстве, определяет некоторую линию (направляющую). В результате такого перемещения прямая описывает некоторую

Если направляющая является замкнутой ломаной линией, то получается **призматическая поверхность**.

Если направляющая – окружность, получается **круговая цилиндрическая поверхность**.

Если направляющая – замкнутая кривая, то получается **цилиндрическая поверхность.**

При пересечении получившейся поверхности двумя параллельными плоскостями получается либо **призма**, либо **цилиндр.**


Если образующие перпендикулярны плоскостям оснований, то призма и цилиндр – **прямые**. Если нет – **наклонные**.

Конус и пирамида

Пусть дана некоторая точка в пространстве (вершина) и луч, выходящий из этой точки (образующая). Выберем на луче некоторую точку. Эта точка, передвигаясь вместе с лучом в пространстве, определяет некоторую линию (направляющую). Если луч будет перемещаться в пространстве так, что при этом постоянно будет проходить через неподвижную вершину, то он опишет некоторую поверхность.

Если направляющая – замкнутая ломаная, то получится пирамидальная поверхность.

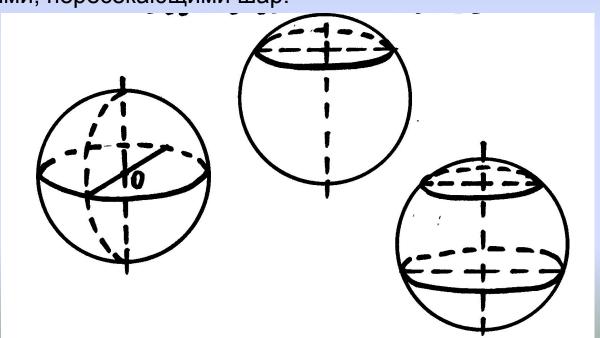
Если направляющая – замкнутая кривая, то получится коническая поверхность.

Если полученную поверхность пересечь плоскостью, то получится либо **пирамида**, либо **конус.**

Если плоскость основания перпендикулярна отрезку, соединяющему центр основания и вершину, то конус и пирамида – **прямые**.

Сфера и шар

Сфера – поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки – **центра сферы**.


Радиус сферы – отрезок, соединяющий центр и любую точку сферы.

Диаметр сферы – отрезок, соединяющий две точки сферы и проходящий через ее центр.

Шар – тело, ограниченное сферой – множество точек пространства, расположенных от данной точки на расстоянии, не большем данного.

Шаровой сегмент – часть шара, отсекаемая от него плоскостью.

Шаровой слой — часть шара, расположенная между двумя параллельными плоскостями, пересекающими шар.

"Ничто не нравится, кроме красоты, в красоте - ничто, кроме форм, в формах - ничто, кроме пропорций, в пропорциях - ничто, кроме числа". А. Августин