ТЭК России в XXI веке

МОСКОВСКИЙ МЕЖДУНАРОДНЫЙ ЭНЕРГЕТИЧЕСКИЙ ФОРУМ 7-10 апреля 2010 г.

О необходимости и темпах развития возобновляемой энергетики России.

Безруких Павел Павлович,

Д.Т.Н.,

зам. ген. Директора ГУ «Института Энергетической стратегии», Председатель Комитета по проблемам использования ВИЭ РосСНИО,

Академик – секретарь секции «Энергетика» РИА

Аргументы 3А:

- возобновляемая энергетика (ВЭ) это наиболее быстрый и дешевый способ решения проблем энергоснабжения (электроэнергия, тепло, топливо) удаленных труднодоступных населенных пунктов, не подключенных к сетям общего пользования, фактически речь идет о жизнеобеспечении 10 15 млн. человек;
- сооружение энергетических установок возобновляемой энергетики – наиболее быстрый и дешевый способ энергообеспечения предприятий малого и среднего бизнеса, а это дополнительные рабочие места в деревнях и малых городах, где безработица – прямой путь к нищете;
- сооружение объектов возобновляемой энергетики не требует больших единовременных капитальных вложений и осуществляется за короткое время (один три года), в отличии от 5 10 летних периодов строительства объектов традиционной энергетики;

Аргументы 3А:

- крупные объекты возобновляемой энергетики это сокращение дефицита мощности и энергии в дефицитных энергосистемах, т.е. устранение препятствий в развитии промышленности;
- развитие возобновляемой энергетики это развитие инновационных направлений в промышленности, расширение внутреннего спроса на изделия машиностроения, а также расширение экспортных возможностей. Только на основе расширения внутреннего спроса возможно устойчивое развитие страны, как справедливо утверждают настоящие экономисты всех общественных формаций.

Развитие возобновляемой энергетики означает развитие наукоемких технологий и оборудования.

В технологиях возобновляемой энергетики реализуются последние достижения многих научных направлений и технологий: метеорологии, аэродинамики, электроэнергетики, теплоэнергетики, генераторо- и турбостроения, микроэлектроники, силовой электроники, нанотехнологии, материаловедения и т.д.

В свою очередь развитие наукоемких технологий имеет значительный социальный и макроэкономический эффект в виде создания дополнительных рабочих мест за счет сохранения и расширения научной, производственной и эксплуатационной инфраструктуры энергетики, а также создания возможности экспорта наукоемкого оборудования.

Аргументы 3А:

• возобновляемая энергетика стремительно развивается более, чем в 80 странах мира.

В условиях кризиса темпы роста в 2006 -2008 годах по отношению к предыдущему году составили:

```
по ветроэнергетике 20 – 25 %;
по фотоэнергетике 40 – 45 %;
по солнечным коллекторам 10 – 15 %.
```

• отсутствие потенциальной опасности техногенных катастроф.

Развитие возобновляемой энергетики означает:

обеспечение диверсификации топливно-энергетического баланса субъектов РФ за счет увеличения производства электрической и тепловой энергии на базе ВИЭ и в, конечном счете, повышение доли ВИЭ в федеральном балансе производства и потребления электрической тепловой и первичной энергии страны.

В России имеются все возможности создания оптимально диверсифицированного топливно-энергетического баланса, в котором равные доли будут приходиться на ТЭС, АЭС и

ГЭС+ВИЭ=33,3-33,3-33,3%

В 2008 году=68,2-15,7-16,1%

Развитие возобновляемой энергетики означает:

повышение экологической безопасности в локальных территориях, т.е. снижение вредных выбросов от электрических и котельных установок в городах со сложной экологической обстановкой, в местах массового отдыха населения, санитарно-курортных местностях и заповедных зонах.

Аргументы против:

- нестабильность производства энергии;
- низкая плотность энергии;
- дороговизна оборудования и вырабатываемой энергии; ?
- необходимость резервирования мощности ВЭС; ?
- малая мощность ветростанции (по сравнению с традиционными электростанциями);?!
- потребление реактивной мощности. ??

Основные показатели возобновляемой энергетики мира в 2006-2008 годах

	2006	2007	2008
Ежегодные инвестиции в ВИЭ, млрд. \$	63	104	120
Мощности возобновляемой энергетики (без крупных ГЭС), ГВт	207	240	280
Потенциал ВИЭ (включая крупные ГЭС), ГВт	1020	1070	1140
Установленная мощность ВЭС, ГВт	74	94	121
Установленная мощность ФЭС, подключенных к сети, ГВт	5,1	7,5	13
Производство ФЭС, ГВт/год	2,5	3,7	6,9
Мощности по производству солнечной горячей воды, ГВт (тепл.)	105	126	145
Производство этанола, млрд. л.	39	50	67
Производство биодизеля, млрд. л.	6	9	12
Страны с политическими целями		66	73
Страны, регионы, штаты с тарифной политикой		49	63
Страны, регионы, штаты с нетарифной политикой		44	49
Страны, регионы, штаты со стимулированием биотоплива		53	55

Источник: Renewables global status report / 2009

Ввод мощностей возобновляемой энергетики в 2008 году 10				
	Введенные мощности	Установленные мощности		
	в 2008 году	на конец 2008 году	рост в % к 2007 году	
Электрическая энергия	ГВт	ГВт		
Крупные ГЭС	25-30	860	3,6	
ВЭС	27	121	28,7	
Малые ГЭС	6-8	85	10	
Биомасса	2	52	4,0	
Солнечные сетевые ФЭС	5,4	13	71,0	
Геотермальная энергия	0,4	10	4,2	
Солнечная энергия с использованием концентратов	0,06	0,5	13,6	
Итого ВИЭ без крупных ГЭС, ГВт	40,86	281,8	16,9	
Энергия океана	~0	0,3		
Тепловая энергия	ГВт (тепл)	ГВт (тепл)		

н/д

19

н/д

Млрд.л/год

17

3

Биомасса

Солнечная энергия

Геотермальная тепло

Производство этанола

Производство биодизеля

Транспортные энергоносители

12

~250

145

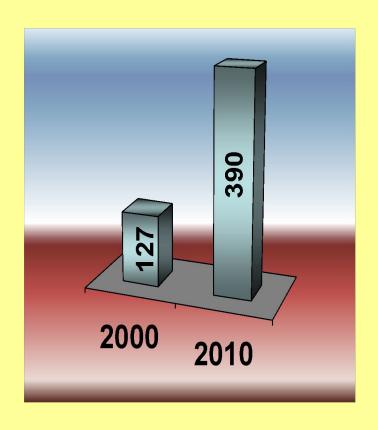
~50

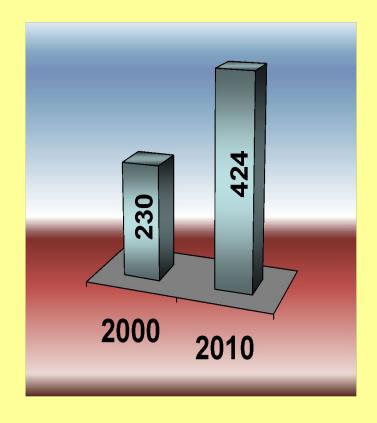
Млрд.л/год

67

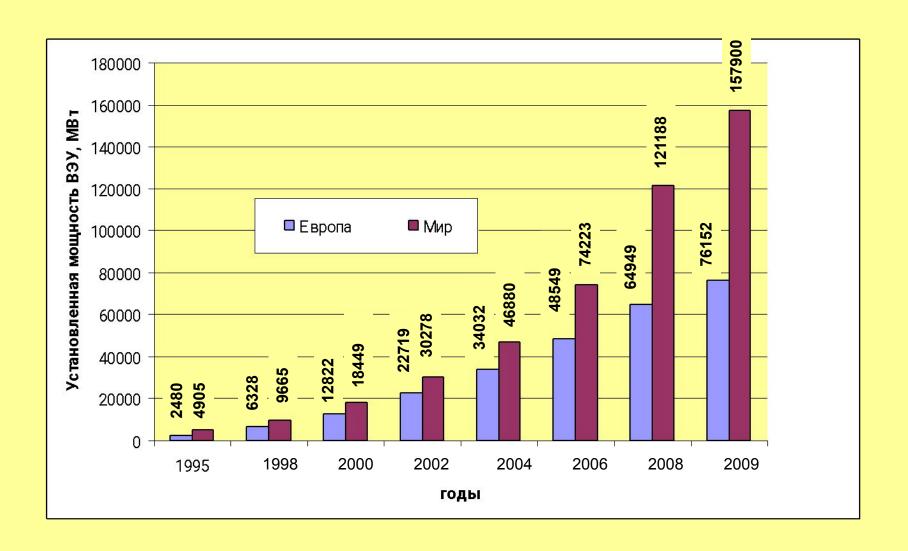
15

34,0


33,3


Источник: Renewable global status report / 2009

Среднесрочный прогноз ГУ ИЭС роста установленной мощности на базе ВИЭ в мире


• Установленная электрическая мощность, ГВт (эл.)

• Установленная тепловая мощность, ГВт (тепл.)

Динамика установленной мощности ВЭУ, подключенной к электрическим сетям, в странах мира (МВт), за период 1995-2008 годы.

Доля ветроэнергии в производстве электроэнергии в странах Европейского Союза. Состояние и перспективы.

	2005 факт	2010	2020	2030
Производство электроэнергии на ВЭС, ТВт-ч	83	179	510	974
Производство электроэнергии в странах ЕС по базовому сценарию развития, ТВт-ч	3013	3483	4006	4367
Доля ветровой энергии в производстве электрической энергии по базовому сценарию, %	2,8	5,1	12,7	22,3
Производство электроэнергии в странах ЕС по сценарию энергоэффективности, ТВт-ч	3013	3314	3250	3218
Доля ветровой энергии в производстве электрической энергии по эффективному сценарию, %	2,8	5,4	15,7	30,3

Источник: Eurelectric (2005) and European Commision

Доля ветровой

электрической

0,19

0,24

0,30

0,36

0,43

0,53

0,64

0,79

0,98

1,37

1,70

2,13

5,58

10,86

18,82

20,60

энергии, %

Годовой

Программа "Wind Force 10"

Общая установленная

Факт*

мощность на конец

года, МВт

прогноз

Источник: Программа "Wind Force 10", *EWEA, WWEA. Разработчики: EWEA, Форум по энергетике и

Годовое

ТВт*ч

производство

электрической

энергии на ВЭС,

29,1

37,3

47,1

58,9

73,1

91,5

115,4

146,6

187,0

268,4

245,0

444,6

1333,8

2966,6

6242,9

7928,7

Годовое

потребление

электрическо

й энергии в

мире, ТВт*ч

ввод

МВт

мощности,

Процент

развитию Дании, Международный Гринпис.

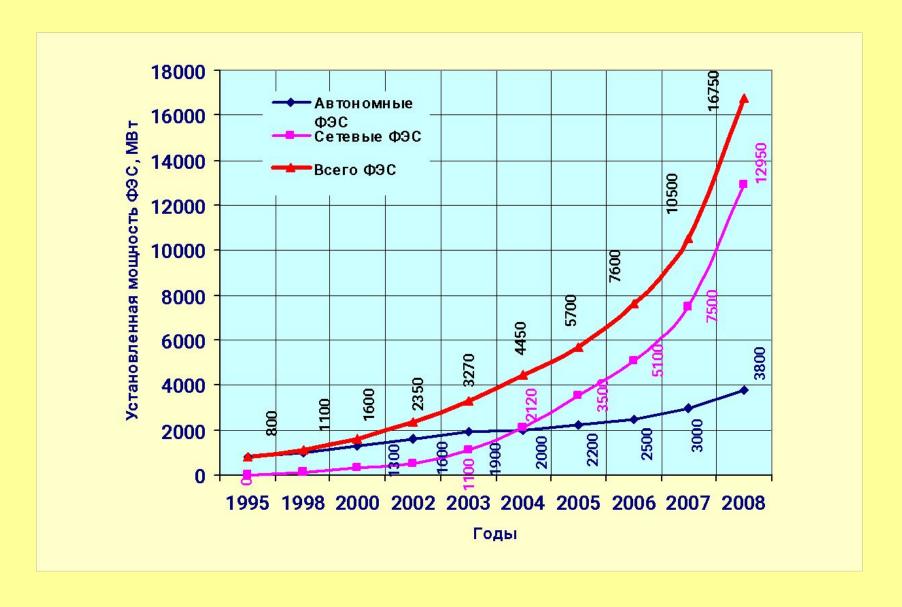
роста в

год, %

Годы

Перечень действующих и строящихся наземных ветростанций мира мощностью 300 МВт и более по состоянию на конец 2008 года.

№ п/п	Название ветростанции	Установленная	Страна,
		мощность, МВт	штат
1.	Altamont Pass Wind Farm	596 (606)	США, Калифорния
2.	Buffalo Gap Wind Farm	523	США, Техас
3.	Capricorn Ridge Wind Farm	662	США, Техас
4.	Cedar Creek Wind Farm	300	США, Колорадо
5.	Crystal Lake Wind Farm	350	США, Айова
6.	Fântânele Wind Farm	600	Румыния
7.	Fowler Ridge Wind Farm	750	США, Индиана
8.	Horse Hollow Wind Energy Center	736	США, Техас
9.	Huitengliang Wind Farm	300	Китай
10.	Klondike Wind Farm	400	США, Орегон
11.	Lone Star Wind Farm	400	США, Техас


Перечень действующих и строящихся наземных ветростанций мира мощностью 300 МВт и более по состоянию на конец 2008 года.

№ п/п	Название ветростанции	Установленная	Страна,
		мощность, МВт	штат
12.	Maple Ridge Wind Farm	322	США, Нью-Йорк
13.	Panther Creek Wind Farm	458	США, Техас
14.	Peetz Wind Farm	400	США, Колорадо
15.	Roscoe Wind Farm	781	США, Техас
16.	San Gorgonio Pass Wind Farm	619	США, Калифорния
17.	Sherbino Wind Farm	750	США, Техас
18.	Shiloh Wind Farm	300	США, Калифорния
19.	Stateline Wind Project	300	США, Орегон
20.	Sweetwater Wind Farm	585	США, Техас
21.	Tehachapi Pass Wind Farm	685 (690)	США, Калифорния
22.	Twin Groves Wind Farm	396	США, Иллинойс

Примечание: 1. перечень действующих и сооружаемых ВЭС мощностью более 100 МВт содержат 45 ВЭС;

2. Перечень ветростанций, намеченных к строительству содержат: наземных 131, общей мощностью 29669МВт; Морских 49, общей мощностью 56142 МВт

Динамика установлении мощности ФЭС в странах мира (МВт)

Установленные мощности на конец

>250

года

>450

в 2004-2008 г.г., МВт

веденные и установленные мощности сетевых ФЭС

>150

Источник: Renewable global status report / 2009

>200

>30

>80

	5	1

Страны

Германия

Испания

Япония

Калифорния

Ю. Корея

Всего

Другие страны

Всего введенные

ные

установлен-

Другие штаты США

Другие страны EU

Введенные мощности

>20

>50

Введенные и установленные мощности для солнечного нагрева воды странах мира в 2007 году

Страны	Введенные мощности	Установленные мощности на конец 2007 года	
	ГВт (тепл)	ГВт (тепл)	млн. кв.м.
Китай	16	84	120
Европейский Союз	19	15,5	22
Турция	0,7	7,1	10
Япония	0,1	4,9	7
Израиль	0,05	3,5	5
Бразилия	0,3	2,5	3,6
США	0,1	1,7	2,4
Индия	0,2	1,5	2,1
Австралия	0,1	1,2	1,7
Иордания	~0	0,6	0,9
Другие страны	<0,5	<3	<4,3
Итого в мире	20	126	180

Источник: Источник: Renewable global status report / 2009

Пиковая мощность по постоянному току,

40

34.5

34

30

31.8

30

30

28

26

25

ФЭС мощностью более 20 МВт.

Страна

№ п/п

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Waldpolenz Solar Park

Arnedo Solar Plant

Planta Solar Dulcinea

Merida/Don Alvaro Solar Park

Planta Fotovoltaico Casas de Los Pinos

DeSoto Next Generation Solar Energy Center

Planta Solar Ose de la Vega

Planta Solar Fuent Alamo

Planta Solar La Magascona & La Magasquila

Planta Solar La Magascona & La Magasquila

Название ФЭС

			МВт
1.	Olmedilla Photovoltaic Park	Испания	60
2.	Strasskirchen Solar Park	Германия	54
3.	Lieberose Photovoltaic Park	Германия	53
4.	Puertollano Photovoltaic Park	Испания	50
5.	Moura photovoltaic power station	Португалия	46
6.	Kothen Solar Park	Германия	45
7.	Finsterwalde Solar Park	Германия	42

Германия

Испания

Испания

Испания

Испания

Испания

Испания

Испания

Испания

США

ФЭС мощностью более 20 МВт.

№ п/п	Название ФЭС	Страна	Пиковая мощность по постоянному току, МВт
18.	SinAn power plant	Корея	24
19.	Monalto di Castro PV power plant	Италия	24
20.	Arnprior Solar Generating Station	Канада	23.4
21.	Sarnia PV power plat	Канада	23.4
22.	Planta fotovoltaica de Lucainena de las Torres	Испания	23.2
23.	Parque Fotovoltaico Abertura Solar	Испания	23.1
24.	Parque Solar Hoya de Los Vincentes	Испания	23
25.	Huerta Solar Almaraz	Испания	22.1
26.	Mengkofen Solar Park	Германия	21.7
27.	Parque Solar El Coronil 1	Испания	21.4
28.	Solarpark Calveron	Испания	21.2

Примечание: 1. ФЭС, мощностью 20 МВт, занимает около 25 га.

- 2. Перечень действующих ФЭС мощностью 10 МВт и выше содержит 28 станций общей мощностью 4310,3 МВт.
- 3. Перечень намечаемых к строительству ФЭС содержит 12 станций, общей мощностью 2000,6 MBт

Перечень действующих и стоящихся солнечных термодинамических станций, мощностью 100 МВт и более

№ п/п	Название станции	Страна, штат, провинция	Мощность, МВт
1.	Solar Energy Generating Systems	США, Калифорния	354
2.	Andasol solar power station	Испания, Гранада	100
3.	Andasol 3–4	Испания, Гранада	100
4.	Palma del Rio 1, 2	Испания, Кордова	100
5.	Majadas de Tiétar	Испания, Касерес	50
6.	Solnova 1, 3, 4	Испания, Бадахос	150
7.	Extresol 1-3	Испания, Бадахос	150
8.	Helioenergy 1, 2	Испания, Севилья (Эсиха)	100
9.	Solaben 1, 2	Испания, Касерес (Логросан)	100
10.	Valle Solar Power Station	Испания, Кадис	100
11.	Aste 1A, 1B	Испания, Сьюдад-Реаль	100
12.	Termosol 1+2	Испания, Бадахос	100
13.	Helios 1+2	Испания, Сьюдад-Реаль	100

Страны	Этанол		Биодизель	
	млрд. л.	тыс. т.н.э	млрд. л.	тыс. т.н.э
США	34	17216	2,0	1594,3
Бразилия	27	13672	1,2	956,8
Франция	12	6076	1,6	1275,4
Германия	0,5	253,2	2,2	1753,7
Китай	1,9	962,1	0,1	79,71
Аргентина	-	-	1,2	956,8
Канада	0,9	455,7	0,1	79,71
Испания	0,4	202,5	0,3	239,1
Таиланд	0,3	151,9	0,4	318,9
Колумбия	0,3	151,9	0,2	159,4
Италия	0,13	65,8	0,3	239,1
Индия	0,3	151,9	0,02	15,94
Швеция	0,14	70,9	0,1	79,71
Польша	0,12	60,8	0,1	79,71
Великобритания	-	-	0,2	159,4
Итого в EU	2,8	1417,8	8	6377,2
Всего в мире	67	33925,7	12	9565,8

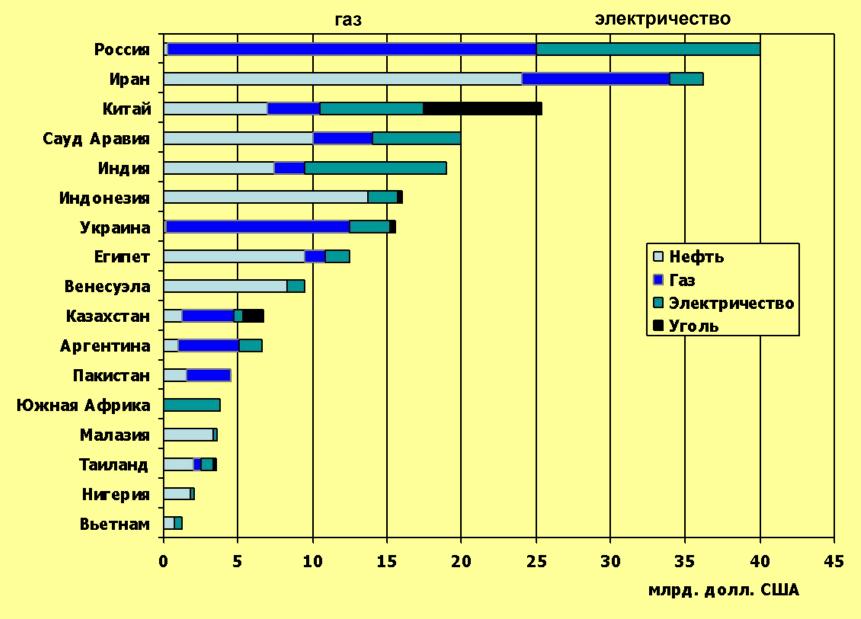
Источник: Источник: Renewable global status report / 2009

Существующие и перспективные стоимостные ориентиры в области ВИЭ

	Капитальные вложения, \$/кВт		Себестоимость производства, цент \$/кВт*ч	
	2005	2030	2005	2030
Биомасса	1000-2500	950-1900	3,1-10,3	3,0-9,6
Геотермальная энергетика	1700-5700	1500-5000	3,3-9,7	3,0-8,7
Традиционная гидроэнергетика	1500-5500	1500-5500	3,4-11,7	3,4-11,5
Малая гидроэнергетика	2500	2200	5,6	5,2
Солнечная фотоэнергетика	3750-3850	1400-1500	17,8-54,2	7,0-32,5
Солнечная теплоэнергетика	2000-2300	1700-1900	10,5-23,0	8,7-19,0
Приливная энергетика	2900	2200	12,2	9,4
Наземная ветроэнергетика	900-1100	800-900	4,2-22,1	3,6-20,8
Морская ветроэнергетика	1500-2500	1500-1900	6,6-21,7	6,2-18,4
АЭС	1500-1800	-	3,0-5,0	-
ТЭС на угле	1000-1200	1000-1250	2,2-5,9	3,5-4,0
ТЭС на газе	450-600	400-500	3,0-3,5	3,5-4,5

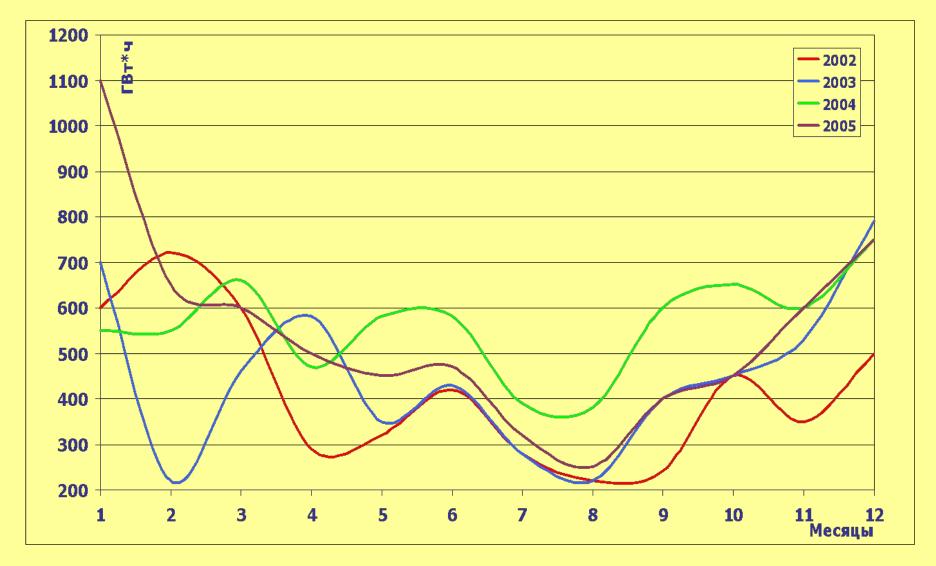
Источник: Международное энергетическое агентство (IEA)

Об экономической эффективности возобновляемой энергетики


Вот что пишут об экономической оценке ведущие специалисты Мирового Банка.

«Традиционный финансовый анализ основан на расчете дисконтированного кеш-флоу. Но такого рода анализ не способен адекватно учесть будущие риски, связанные с ценами на топливо. Он также полностью игнорирует затраты на охрану окружающей среды и здравоохранение, связанные с эмиссиями на электростанциях сжигающих ископаемое топливо.

Если мы рассмотрим затраты на полный технический цикл, то некоторые возобновляемые источники уже сейчас могут конкурировать с традиционными энергетическими ресурсами. Несмотря на это, потенциал этих финансово жизнеспособных технологий ВИЭ не реализуется полностью из-за различных барьеров рынка, таких как государственное субсидирование традиционных топлив». По данным этих авторов ежегодное государственное финансирование в России газовой промышленности составляет 25 млрд. долл. США, а электроэнергетики – 15 млрд. долл. США.

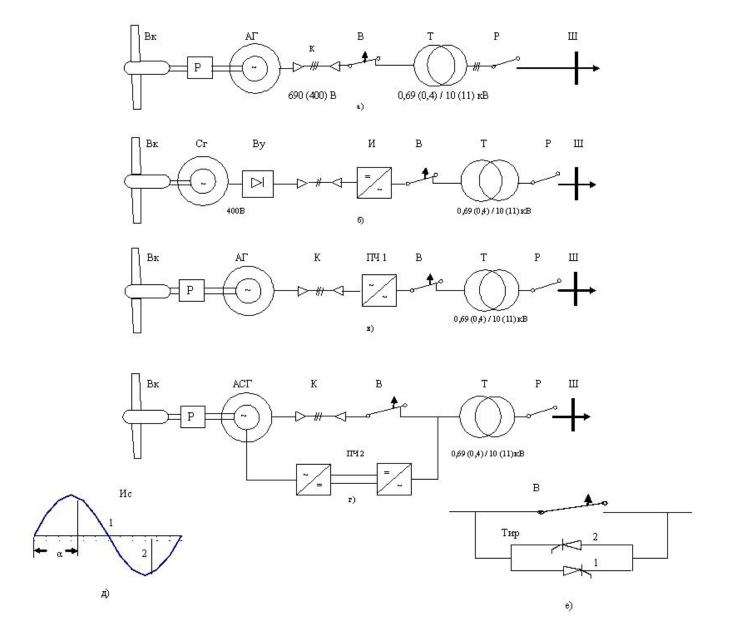

Источник: Anil Cabraal, Sachin Agarwal, Masaki Takahashi, «Rising tu the challenge»/ Renwable Energy World, July-August 2007

Годовые субсидии в энергетику некоторых стран

Источник: IEA, World Energy Outlook,2006, Renewable Energy World, July, August, 2007

Производство электроэнергии на ВЭС в Дании. 2002-2005 годы

Источник: EIA Monthly Electricity and Eurostat Monthly Energy Statistics


О необходимости резервирования мощности ВЭС

В США по данной проблеме проведено много исследований. Вот как звучит вывод по проблеме Utiliti Wind Group (организация включающая 55 электрических компаний США, имеющих в своих энергосистемах ветростанции).

«Устаревшие и непрофессиональное мнение, одно из главных беспокойств, часто выражаемое в энергетике состоит в том, что ветростанции будут нуждаться в резервировании или передаваемой мощности в равном объеме. Сейчас ясно, что как раз при умеренной доле ветроэнергетики, необходимость иметь дополнительную генерирующую мощность для компенсации нестабильности ветростанции, значительно меньше, чем один к одному и часто близко к нулю».

Одно из авторитетнейших исследований, проведенное в 2004 году для департамента коммерции штата Миннесота США, подтвердило, что дополнительное включение ВЭС мощностью 1500МВт в энергосистему наибольшего объединения Xeel Energy в штате Миннесота, будет нуждаться в дополнительном вводе мощностей всего лишь 8 МВт на традиционном топливе, для того, чтобы погасить дополнительные вариации мощности.

Схемы подключения ветрогенераторов к сети (а, б, в, г) и однофазная схема туристорного мягкого пуска (е)

Оценка потенциала возобновляемых источников энергии России

Ресурсы	Валовый потенциал, млн. т у.т./год	Технический потенциал, млн. т у.т./год	Экономический потенциал, млн. т у.т./год
Энергия ветра	44326	2216	11
Малая гидроэнергетика	402	126	70
Солнечная энергия	2 205400	9695	3
Энергия биомассы	467	129	69
Геотермальная энергия (гидротермальные ресурсы)	*	11869	114
Низкопотенциальное тепло	563	194	53
ИТОГО по ВИЭ	2 251158	24229	320

^{*} Валовый потенциал гидротермальной энергии составляет 29,2 трлн. т у.т.

Выработка электрической энергии в России на базе ВИЭ

15,65

313,1

2276,7

5518,1

(2025,0)

4630,45

916300

0,51

Источник: Отчеты о технико-экономических показателях и расходе условного топлива на электростанциях России за 2000- 2008 годы. Госкомстат России. * В скобках указано количество выработанной энергии непосредственно за счет использования биомассы.

9,88

395,0

2738,2

5670,7

(2431,5)

5574,68

931900

0,6

9,63

396,4

2788,1

5562,9

(3720,1)

6908,23

953100

0,73

7,46

462,6

2548,5

5833.4

(2612,9)

5631,46

931381

0,61

7,74

484,7

2659,2

5981.3

(2817,1)

5968,74

1008256

0,61

31

2008

5,235

446,5

3178,5

5941,2

(2325,9)

5974,135

1033327

0,58

включая малые ГЭС, млн. кВтч								
Период	2000	2001	2002	2003	2004	2005	2006	2007

6,77

149,1

2429,5

6582,8

(1995,4)

4580,77

891300

0,52

1,07

58,2

1672,6

4791.5

(1380,3)

3112,17

877800

0,36

на

4,12

91,2

2586,5

4991.2

(1380,9)

4071,78

891300

0,46

No

п/п

1

2

3

4

Итого:

Доля

Производство

электроэнергии

Ветростанции

Геотермальные

электростанции

электростанции

на биомассе*

Малые ГЭС

Тепловые

электростанциях России

источников энергии, %

возобновляемых

25,0

3,9

Отпуск тепловои э	нергии в России на базе виэ,	
	тыс. Гкал	

12,0

3,5

10,0

3,37

сис-

12,0

3,45

Νo

п/п

Итого:

Период

источники

Солнечные

коллекторы

всех видов

Потребление тепловой

Доля возобновляемых

источников энергии, %

энергии, млн. Гкал

Геотермальные

Тепловые насосы

Мусоросжигающие

заводы и установки

Биогазовые установки

темы теплоснабжения

Тепловые электро-

Котельные на био-

массе и автономные

станции на биомассе

Отпуск тепловой энергии в России на базе ВИЭ,	
тыс. Гкал	

15,0

3,5

18,0

3,5

20,0

3,6

22,0

3,5

25,0

3,7

Доля ВИЭ в производстве и внутреннем потреблении первичных энергоресурсов

		2000	2001	2002	2003	2004	2005	2006	2007	2008
Производство электроэнергии	млн. кВтч	3112,1 7	4071,7 8	4580,7 7	4630,4 5	5576,6 8	6908,2 3	5631,46	5968,7 4	5974,135
	млн. т у. т.	1,070	1,400	1,576	1,593	1,918	2,376	1,932	2,041	2,031
Производство тепловой энергии	тыс. Ккал	54305	56122	57580	57475	57550	58332	59290	60562	62514
	млн. т у. т.	10,806	11,168	11,458	11,380	11,337	11,374	11,561	11,749	12,065
Производство дров	млн. т у.т	5,4	5,2	5,1	5,0	5,0	5,0	5,0	5,2	5,2
Всего млн. т у.т.		17,276	17,768	18,134	17,973	18,255	18,75	18,493	18,99	14,096
Производство/потребление первичной энергии в России, млн. т у.т.		1408	1455	1505	1607	1687	1733	1769	1787	1812
		907	918	919	938	956	949	975	985	1009
Доля ВИЭ в производстве/потреблении первичной энергии, %		1,23	1,22	1,20	1,12	1,08	1,08	1,05	1,06	1,06
		1,90	1,94	1,97	1,92	1,91	1,98	1,90	1,93	1,91

Источник: Российский статистический ежегодник 2000 – 2007 г.г. Отчет о технико-экономических показателях электростанций- 2000 – 2008 г.

Энергетическая стратегия России на период до 2030 года. (утверждена распоряжением Правительства РФ от 13 ноября 2009г. №1715-р)

Этапы реализации	2008 (факт)	I 2013-2015	II 2020-2022	III 2030
Производство электрической энергии млрд. кВтч	1037	1059- 1245	1350- 1550	1800- 2210
в том числе на базе ВИЭ, без крупных ГЭС млрд. кВтч	0,6% 5,9	2,5% 26-30	4,5% 60-70	7% 126-155

Киум=0,25

Kиум = 0,5

Киум=0,75

Киум=0,6

Киум=0,4

Приливные,

солнечные

фотоэлектрические,

биоэнергетические,

и млрд. кВтч

15,3

16,4

13,1

16,6

5,2

6,8

26,3

31,5

0,5

1,0

60,4

72,3

Вид ВИЭ	Установлен	Установленная	Годовое	Примечание				
	ная мощность,	мощность на конец	производство					
	МВт.	II-го периода МВт	электроэнерги					

7000

7500

3000

3800

800

1000

5000

6000

150

300

18600

2008г.

11

683

90

1316

2100

ВЭС

МГЭС

ГеоЭС

ТЭЦ

Прочие

Всего

К вопросу об организации достижения цели 2020 года развития ВИЭ в России.

Необходимо разработать:

- распоряжение Правительства РФ по утверждению «Методических указаний по декомпозиции целевых показателей по производству электрической и тепловой энергии с использованием ВИЭ по субъектам РФ, компаниям ТЭК и компаниям, имеющим долю в предприятиях ТЭК, а также комплекс законодательных и подзаконных нормативных документов»;
- законопроекты или изменения к существующим федеральным законам обеспечивающие:
- Стимулирование производства тепловой энергии и топлива на основе использования ВИЭ;
- Стимулирование производства электрической и тепловой энергии на основе использования ВИЭ для индивидуального и группового использования.
- изменения к федеральному закону «Об обороте спирточодержащей продукции», предусматривающие освобождение от акцизного налога производителей биоэтанола.
- разработать и утвердить подзаконные акты, обеспечивающие реализацию изменений Федерального Закона №35-ФЗ «Об электроэнергетике», касающиеся производства электрической энергии на основе использования ВИЭ.

К вопросу об организации достижения цели 2020 года развития ВИЭ в России.

Разработать:

- Постановление Правительства Российской Федерации «О критериях предоставления из Федерального бюджета субсидий для компенсации стоимости технологического присоединения генерирующих объектов, признанных квалифицированными объектами, функционирующими на основе использования возобновляемых источников энергии».
- Постановление Правительства Российской Федерации «О критериях представления из Федерального бюджета субсидий для компенсации стоимости технологического присоединения генерирующих объектов, признанных квалифицированными объектами, функционирующими на основе использования возобновляемых источников энергии».
- Постановление Правительства Российской Федерации «О дополнительных мерах государственной поддержки использования возобновляемых источников энергии в Российской Федерации».

ГУ «Институт энергетической стратегии»

Комитет ВИЭ РосСНИО

РИА, Секция «Энергетика»

Благодарим за внимание!!