Простейшие задачи в координатах.

Метод координат.

Координаты середины отрезка.

- Дано: А(х1;у1) В(х2;у2) С-середина АВ.
- Выразить: С (х; у), через А и В.
- Доказательство:

Т.к. C – середина AB, то \overrightarrow{OC} = 0,5 $(\overrightarrow{OA}$ +OB)

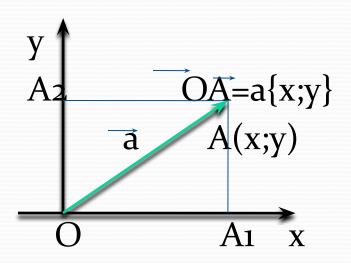
Координаты векторов \overrightarrow{OC} , \overrightarrow{OA} и \overrightarrow{OB} равны координатам точек C, A и B: $OC\{x;y\}$, $\overrightarrow{OA}\{x_1;y_1\}$, $\overrightarrow{OB}\{x_2;y_2\}$.

Тогда:

$$x=0.5(x1+x2)$$
; $y=0.5(y1+y2)$.

Вывод. Каждая координата середины отрезка равна полусумме соответствующих координат его концов.

Вычисление длины вектора по его координатам.



$$|\vec{a}| = \sqrt{x^2 + y^2}$$

Доказательство.

Отложим от начала координат вектор ОА = а и проведем через точку А перпендикуляры АА1 и АА2 к осям Ох и Оу. Координаты точки А равны координатам вектора ОА{x;y}. Поэтому ОА1=x, АА1= ОА2 = y. По теореме Пифагора:

$$OA = \sqrt{OA1^2 + AA1^2} = \sqrt{x^2 + y^2}$$

Но |a| = |OA| = OA, поэтому $|a| = \sqrt{x^2 + y^2}$, что и требовалось доказать.

Расстояние между точками.

- Дано: М1(х1;у1) М2(х2;у2)
- Выразить расстояние d между точками M1 и M2.
- Доказательство:

Рассмотрим вектор M₁M₂{x₂-x₁;y₂-y₁}. Следовательно, длина этого вектора может быть найдена по формуле:

 $M_1M_2 = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$. Но $M_1M_2 = d$. Таким образом, расстояние d между точками $M_1(x_1;y_1)$ и $M_2(x_2;y_2) = d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$