
## Кодирование звука

#### Временная дискретизация

http://www.uchportal.ru/load/18-1-0-22914

#### Непрерывная звуковая волна



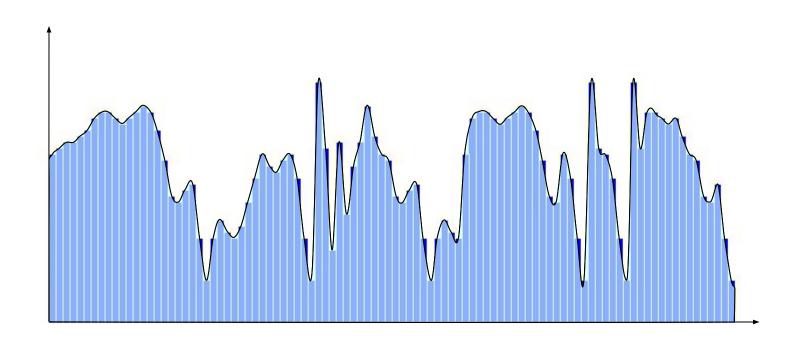
#### Основные характеристики звука

Длина волны и частота:

$$l=1/v$$

Чем больше длина волны, тем меньше частота. Измеряется в количестве колебаний в секунду (1/сек)

Амплитуда колебаний.


Соответствует громкости звука. Громкость измеряется в *децибелах* (*дБ*)

## Громкость звука

| Звук                                             | Громкость |
|--------------------------------------------------|-----------|
| Нижний предел чувствительности человеческого уха | 0 дБ      |
| Шорох листьев                                    | 10 дБ     |
| Разговор                                         | 60 дБ     |
| Гудок автомобиля                                 | 90 дБ     |
| Реактивный двигатель                             | 120 дБ    |
| Болевой порог                                    | 140 дБ    |

#### Временная дискретизация звука

Процесс разбиения непрерывной звуковой волны на отдельные (дискретные) временные участки, для которых может быть установлены различные уровни громкости



## Частота дискретизации

- Для записи аналогового сигнала и его преобразования в цифровую форму используется микрофон, подключенный к звуковой карте
- Качество звука зависит от количества измерений уровня звука в секунду
- Количество измерений уровня звука в единицу времени называется частотой дискретизации
- Частота дискретизации лежит в диапазоне от 8 000 до 48 000 измерений в секунду

## Глубина дискретизации

Каждому дискретному временному отрезку – каждой «ступеньке» – присваивается определенный уровень громкости (N), для кодирования которых требуется определенный объем информации (I)

Глубина кодирования звука — количество информации, необходимое для кодирования дискретных уровней громкости цифрового звука

$$N=2^{\prime}$$

## Пример

- Известна глубина кодирования 16 бит (I).
   Рассчитать количество возможных уровней громкости внутри одного измерения звука (N)
- По формуле N = 2<sup>I</sup> находим:

$$N = 2^{16} = 65536$$

 Каждому уровню громкости присваивается одно из 65 536 значений, которое кодируется двоичными числами от 0000 0000 0000 (минимальный уровень) до 1111 1111 1111 (максимальный уровень)

## Вопрос: назовите основные характеристики аналогового звука

#### <u> Yacmoma</u>

(количество вершин на единицу длины оси абсцисс)
От нее зависит высота тона звука.
Измеряется в 1/сек

#### ■ Амплитуда

(высота вершин на графике – координаты по оси ординат) От нее зависит громкость звука Измеряется в децибелах

## Вопрос: назовите основные характеристики цифрового звука

## Частота дискретизации

(количество «ступенек» на единицу длины оси абсцисс)
Определяет высоту тона звука
Измеряется в 1/сек

#### Глубина дискретизации

(на сколько частей может быть разбита одна «ступенька» на графике в высоту) Определяет громкость звука Измеряется в битах

#### Качество оцифрованного звука

Совокупная характеристика качества цифрового звука — профессиональный термин звукорежиссеров и DJ'ев — **битрейт**, представляет собой произведение количества каналов на частоту и на глубину дискретизации .

Измеряется: бит  $\times$  1/сек = бит/сек

#### Качество оцифрованного звука

- Самое низкое качество цифрового звука (качество телефонной связи) соответствует:
- 8 000 измерений в секунду (1/сек)
- 8 бит глубины звука
- Один канал (моно)

#### Битрейт:

 $\mathbf{L}$  1 × 8 × 8000 = 64000 = 62,5 кбит/сек

#### Качество оцифрованного звука

- Самое высокое качество цифрового звука (аудио-CD) соответствует:
- 48 000 измерений в секунду (1/сек)
- 16 бит глубины звука
- Два канала (стерео)

#### Битрейт:

48 000 × 16 × 2 = 1 536 000 ≈ 1,5 Мбит/сек

Современные аудиосистемы кроме стерео поддерживают т.н. *квадрозвук* – 4 канала

## Информационный объем звукового файла

- Чем выше качество звука, тем больше требуется дискового пространства для его хранения и оперативной памяти для его обработки.
- Информационный объем определяется как произведение глубины и частоты дискретизации на длительность воспроизведения и на количество каналов (или произведение битрейта на длительность)

## Пример

Определить информационный объем 5секундной стереозвуковой дорожки с глубиной кодирования 16 бит и частотой дискретизации 24 000 1/с

#### Решение:

```
16 бит × 24 000 1/сек × 5 сек × 2 (канала) = 3 840 000 бит = 468,75 кБ
```

# Программное обеспечение для работы со звуком

#### Различают:

- Средства записи звука
- Звуковые редакторы
- Плееры

## Хранение цифрового звука

- В виде *аудиотреков* на аудио-CD
- В виде звуковых файлов

### Хранение цифрового звука. Audio Track

- Аудиотрек представляет собой формат записи звука в виде непрерывного цифрового потока.
   Аналогично звуковым дорожкам на виниловых дисках.
- Звук хранится без сжатия.
- Аудиодорожка воспринимается компьютером, как файл с расширением
   \*.cda (Compact Disk Audio). Он хорошо воспроизводится плеером, но его нельзя скопировать.

# Хранение цифрового звука. Звуковые файлы

Наиболее распространенные форматы звуковых файлов:

- wav (wave)
- wma (Windows Media Audio)
- mid (midi)
- mp3
- и др.

Из них только wav хранит несжатый звук, все остальные используют сжатие

## Сжатие звуковой информации

- При сохранении звука в форматах со сжатием происходит отбрасывание не воспринимаемых человеческим ухом частот с малой амплитудой.
- Сжатие до десятков раз
- Потеря информации, что может привести к ухудшению качества звука

### Работа со сжатым звуком

- При работе со сжатым звуком файл сначала распаковывается и только потом поступает на обработку плеером или редактором.
- Для распаковки/сжатия аудио применяются специальные программы аудиокодеки (Audio Coder/Decoder)

Звуковая плата производит кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней громкости сигнала?

#### <u>Решение:</u>

$$2^{i} = 65 536$$
 $2^{16} = 65 536$ 
 $I = 16$ 

- Определить информационный объем 10-секундной звуковой дорожки при:
- Моно, 8 бит, 8 000 измерений
- ь. Стерео, 16 бит, 48 000 измерений

#### <u>Решение:</u>

- а.  $1 \times 8 \times 8000 \times 10 = 640000 = 78,1$  (кБ)
- b.  $2 \times 16 \times 48\ 000 \times 10 = 15\ 360\ 000 = 1,83\ (МБ)$

Определить длительность звукового файла, который может уместиться на дискете 3,5".

- Учесть, что для хранения данных на дискете доступно 2 847 секторов, объемом 512 байт каждый.
- а. Моно, 8 бит, 8 000 измерений
- Стерео, 16 бит, 48 000 измерений

## \*Задание 3. Решение

| Секторов | Объем<br>сектора | Вместимость дискеты, бит     |  |  |
|----------|------------------|------------------------------|--|--|
| 2 847    | 512              | 2 847 × 512 × 8 = 11 661 312 |  |  |

|    | Каналов | Глубина | Частота | Битрейт   | Длит-ть, сек |
|----|---------|---------|---------|-----------|--------------|
| a) | 1       | 8       | 8 000   | 64 000    | 182,2        |
| b) | 2       | 16      | 48 000  | 1 536 000 | 7,6          |

Подсчитать, сколько места будет занимать одна минута цифрового стереозвука с частотой 44.1 кГц и разрядностью 16 бит

Решение.

**Число каналов:** 2

**Длительность звучания:** 60 сек

<u> Частота дискретизации:</u>

44,1 \* 1 000 = 44 100 Гц (44 100 1/сек)

*Разрядность:* 16 бит

Информационный объем:

2 \* 60 \* 44 100 \* 16 =

= 84 672 000 бит =

= 10 584байт ≈ 10 Мб

Подсчитать, сколько места будет занимать две минуты цифрового стереозвука с частотой 11 кГц и разрядностью 16 бит

Решение.

**Число каналов:** 2

<u>Длительность звучания:</u>

2 \* 60 = 120 сек

<u> Частота дискретизации:</u>

11 \* 1 000 =

= 11 000 Гц (11 000 1/сек)

*Разрядность:* 16 бит

Информационный объем:

2 \* 120 \* 11 000 \* 16 =

= 42 240 000 бит =

= 5 280 000байт ≈ 5 Мб

Подсчитать, сколько места будет занимать семь минут цифрового монозвука с частотой 22 кГц и разрядностью 8 бит

Решение.

<u>Число каналов:</u> 1

<u>Длительность звучания:</u>

7 \* 60 = 420 сек

<u> Частота дискретизации:</u>

22 \* 1 000 =

= 22 000 Гц (22 000 1/сек)

**Разрядность:** 8 бит

<u>Информационный объем:</u>

1 \* 420 \* 22 000 \* 8 =

= 73 920 000 бит =

= 9 240 000 байт ≈ 8,8 Мб

Подсчитать, сколько места будет занимать три минуты цифрового стереозвука с частотой 32 кГц и разрядностью 8 бит

Решение.

**Число каналов:** 2

<u>Длительность звучания:</u>

3 \* 60 = 180 сек

<u> Частота дискретизации:</u>

32 \* 1 000 =

= 32 000 Гц (32 000 1/сек)

**Разрядность:** 8 бит

<u>Информационный объем:</u>

2 \* 180 \* 32 000 \* 8 =

= 92 160 000 бит =

= 11 520 000 байт ≈ 11 Мб

Какой объем данных имеет моноаудиофайл, длительность звучания которого 1 секунда, при среднем качестве звука (16 бит, 24 кГц)?

Решение.

<u>Число каналов:</u> 1

**Длительность звучания:** 1 с

<u>Частота дискретизации:</u>

24 \* 1 000 =

= 24 000 Гц (24 000 1/сек)

**Разрядность:** 16 бит

<u>Информационный объем:</u>

1 \* 1 \* 24 000 \* 16 =

= 384 000 бит =

= 48 000 байт ≈ 47 кб

Рассчитайте объем стереоаудиофайла длительностью 20 секунд при 20битном кодировании и частоте дискредитации 44.1 кГц.

Решение.

**Число каналов:** 2

**Длительность звучания:** 20 с

Частота дискретизации:

44,1 \* 1 000 =

= 44 100 Гц (44 100 1/сек)

**Разрядность:** 20 бит

Информационный объем:

2 \* 20 \* 44 100 \* 20 =

= 35 280 000 бит =

= 4 410 000 байт ≈ 4,2 Мб

Определите количество уровней звукового сигнала при использовании 8-битных звуковых карт

Решение.

Количество возможных уровней громкости сигнала

$$N = 2^{l}$$
 $N = 2^{8}$ 
 $N = 256$ 

Ответ: а. 256 уровней

Подсчитать объем файла с 10 минутной речью записанного с частотой дискретизации 11 025 Гц и разрядностью кода 4 бита на 1 измерение.

Решение.

#### <u>Число каналов:</u>

речь принято записывать в режиме моно (1 канал)

#### Длительность звучания:

10 \* 60 = 600 cek

#### <u> Частота дискретизации:</u>

11 025 Гц (11 025 1/сек)

*Разрядность:* 4 бит

#### <u>Информационный объем:</u>

1 \* 600 \* 11 025 \* 4 =

= 26 460 000 бит =

= 3 307 500 байт ≈ 3,15 Мб

Подсчитать время звучания звукового файла объемом 3,5 Мбайт, содержащего стереозапись с частотой дискретизации 44 100 Гц и разрядностью кода 16 бит на 1 измерение

Решение.

**Число каналов:** 2

<u>Длительность звучания:</u> X

<u> Частота дискретизации:</u>

44 100 Гц (44 100 1/сек)

**Разрядность:** 16 бит

<u>Информационный объем:</u>

В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность?

Решение. <u>Число каналов:</u> X. Пусть X=1 <u>Длительность звучания:</u> 60 сек <u>Частота дискретизации:</u> Ү *Разрядность:* Z (8 или 16) <u>Информационный объем:</u> 2,6M6 = 218103816ит 1 \* 60 \* Y \* Z = 21 810 381 YZ = 363506,35

При Y=8 Z=45438 Гц = 45,44 кГц  $\approx$  44,1 кГц (standard) При Y=8 Z=22719 Гц = 22,72 кГц  $\approx$  22,05 кГц (standard)

Объем свободной памяти на диске 5,25 Мб, разрядность звуковой платы 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Решение.

<u>Число каналов:</u>

неизвестно, принимаем 1

<u>Длительность звучания:</u> X <u>Частота дискретизации:</u>

22,05 \* 1 000 = 22 500 Гц

*Разрядность:* 16 бит

<u>Информационный объем:</u>

5,25 Мб = 44 040 192 бит 1 \* X \* 22500 \* 16 = 5,25 (Мб) 360 000\*X = 44 040 192 X = 122,3 (сек)

Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы 8. С какой частотой дискретизации записан звук?

Решение.

<u>Число каналов:</u> Х. Пусть X=1 <u>Длительность звучания:</u>

60 сек

<u>Частота дискретизации:</u> Ү <u>Разрядность:</u> 8 бит <u>Информационный объем:</u>

> 1\*60\*Y\*8 = 1,3 (Мб) 480Y = 10 905 190 (бит)  $X \approx 22 719 (бит/сек) \Rightarrow$  $X \approx 22,05 кБит/сек (st.)$