Диофантовы модели сети MPLS для восстановления соединений

Кулаков Кирилл Александрович

Петрозаводский государственный университет

Актуальность

- Специфика сетевых приложений
 - чувствительные к задержкам
 - чувствительные к изменениям топологии
- Управление маршрутами
 - гарантированное время восстановления
 - качество сервиса
 - дополнительные критерии маршрутизации

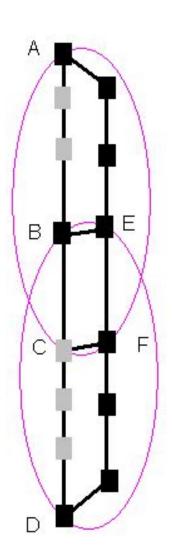
Сеть MPLS

- Мультипротокольная коммутация по меткам
- Уровень 2,5 в модели OSI
- Коммуникация вида «точка-точка» (соединение)
- Набор меток определяет маршрут следования пакета
- Информация о топологии сети хранится на маршрутизаторе в виде набора маршрутов

Задача восстановления соединения

- Потеря соединения
 - Нарушение линии связи
 - Выход из строя узла
- Восстановление соединения
 - Построение обходного маршрута
 - Переключение соединения на новый маршрут
- Контур
 - Обратный текущему маршрут
 - Резервный маршрут

Классификация методов восстановления (RFC 3469)

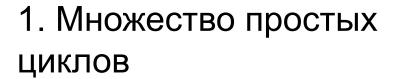

- Подготовка восстановления
 - Перенаправление (rerouting, после потери соединения)
 - Защитное переключение (protection switching, до потери соединения)
- Масштаб восстановления
 - Локальное восстановление (обход точки разрыва)
 - Глобальное восстановление (построение нового маршрута между конечными точками)

Известные методы восстановления

- MPLS local protection (Fast reroute)
 - □ Построение локального резервного маршрута
 - Быстрое восстановление
- MPLS global path protection
 - Построение глобального резервного маршрута
- Short Leap Shared Protection (SLSP)
 - Разбиение маршрута на перекрывающиеся участки
 - Построение резервного маршрута в пределах участка

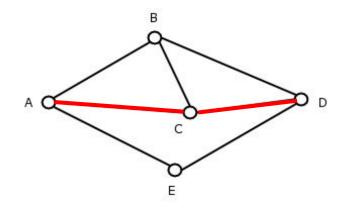
SLSP: Обзор

- Pin-Han Ho, Hussein T. Mouftah
- Разбиение маршрута на домены
- Построение резервного маршрута в домене
- Восстановление только для поврежденного домена
- Быстрое восстановление
- Меньшая деградация характеристик маршрута



SLSP: Алгоритм

- Построить множество простых циклов графа сети
- 2. Для каждого домена выбрать покрывающие маршрут циклы кандидаты
- 3. Из множества кандидатов выбрать наилучший резервный маршрут


SLSP: Пример

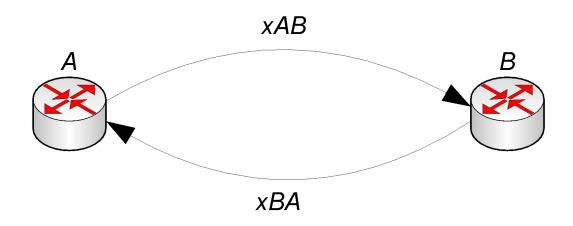
Граф сети MPLS

2. Множество кандидатов

3. Резервный маршрут

ABCA, BCDB, ABDCA, ACDEA, ABCDEA, ACBDEA, ABDEA

ABDCA, ACDEA


AED

Проблемы известных методов восстановления

- Построение всех простых циклов экспоненциальный перебор
- Учет дополнительных ограничений
- Выбор оптимального маршрута
- Эффективный алгоритм:
 - Небольшой набор кандидатов
 - Быстрый поиск кандидата
 - Построение резервного маршрута

Орграф сети MPLS

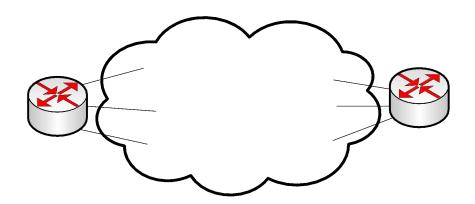
- Узел вершина
- Линия связи AB две дуги хAB и хBA
- $lacksymbol{\blacksquare}$ Вес дуги a_{xAB}

Линейная диофантова модель

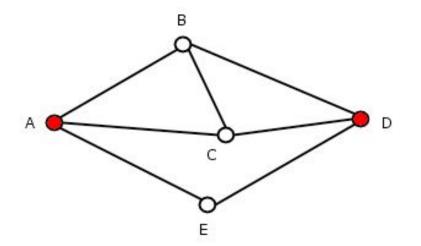
Ассоциированные с формальными грамматиками системы однородных неотрицательных линейных диофантовых уравнений — системы одАНЛДУ

$$\sum_{i \in I_k}^m x_i = \sum_{i=1}^m a_{ki} x_i \quad a_{ki} -$$
 вес дуги і с точки зрения узла к $I_k -$ Исходящие дуги $k \in S$ — Узлы сети m — Количество дуг

Интерпретация модели


- Вес дуги a_{ij} ≥ 0
 - Число попыток передачи
 - Коэффициент загруженности
 - □ Число переходов
 - Приоритет линии связи
- Источник $I_k = \emptyset$ $\sum_i a_{ki} > 0$
- **CTOK** $I_k \neq \emptyset$ $\sum a_{ki} = 0$
- Недостижимый узел $\sum_{i} a_{ki} = 0$

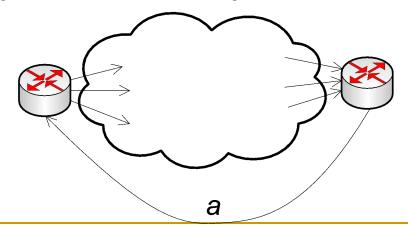
Интерпретация решений


- Решение системы одАНЛДУ = циклический маршрут
- Множество всех решений
- Базис Гильберта конечное описание всех решений
- Базисные решения кандидаты на резервные маршруты

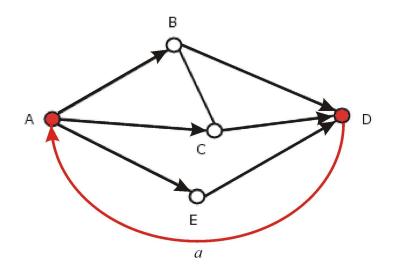
Простейшая модель

- Основа матрица инцидентности
- Вес дуг a_{ki} = 1
- Базисное решение простой контур
- Поиск всех простых контуров

Пример 1



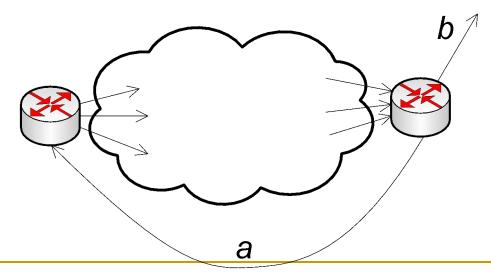
$$\begin{cases} xAB + xAC + xAE = xBA + xCA + xEA \\ xBA + xBC + xBD = xAB + xCB + xDB \\ xCA + xCB + xCD = xAC + xBC + xDC \\ xEA + xED = xAE + xDE \\ xDB + xDC + xDE = xBD + xCD + xED \end{cases}$$


21 элемент в базисе Гильберта

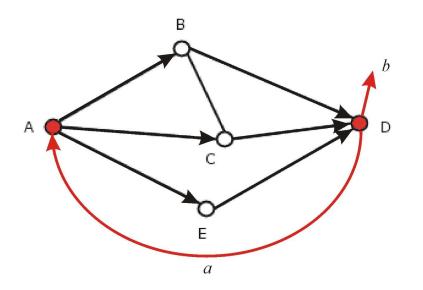
Фиктивная дуга

- Наличие начального и конечного узла
- Удаление неиспользуемых дуг
- Добавление дуги а связывающей конечный узел с начальным
- Поиск контуров проходящих через дугу
- Базисное решение простой контур

Пример 2



$$\begin{cases} xAB + xAC + xAE = a \\ xBC + xBD = xAB + xCB \\ xCB + xCD = xAC + xBC \\ xED = xAE \\ a = xBD + xCD + xED \end{cases}$$


5 элементов в базисе Гильберта

Модель с мерой дуг

- Каждая дуга имеет меру
- Мера дуги а равна 1
- lacksquare В конечном узле существует сток b
- Поиск маршрутов с минимальной мерой *b*
- Базисное решение циклический маршрут

Пример 3

$$\begin{cases} xAB + xAC + xAE = a \\ xBC + xBD = 2xAB + 2xCB \\ xCB + xCD = 2xAC + 2xBC \\ xED = 2xAE \\ a + b = 2xBD + 2xCD + 2xED \end{cases}$$

3 элемента в базисе Гильберта

Преимущества модели

- Орграф сети
- Меры дуг
- Учет дополнительных ограничений
- Поиск базисных решений кандидатов
- Известные алгоритмы решения систем одАНЛДУ

Решение

Псевдополиномиальный алгоритм нахождения базиса Гильберта

Оценки алгоритма решения с помощью 2 алгоритмов генерации систем одАНЛДУ в web-системе Web-SynDic (http://websyndic.cs.karelia.ru/)

Характеристика	Метод	Число неизвестных, т					
		50	100	200	300	500	1000
Время, сек	1	0,005	0,014	0,0369	0,0848	0,2521	1,5463
Память, Кб		1508	1756	2084	2524	3972	8168
Время, сек	2	0,0059	0,0205	0,1123	0,5344	3,0639	23,5981
Память, Кб		1508	1756	2184	2632	4048	10188

Заключение

- Диофантовы модели сети MPLS
- Более общий метод учет дополнительных ограничений
- Применение эффективных алгоритмов для поиска маршрутов
- Использование модели для маршрутизации в других сетях