

Санкт-Петербургский государственный университет Химический факультет

Кафедра химической термодинамики и кинетики

Механизм образования, термическая устойчивость и термодинамические свойства катионоупорядоченных перовскитоподобных слоистых оксидов ALnTiO₄ и A₂Ln₂Ti₃O₁₀ (A=Na, K; Ln=Nd, Gd)

Специальности: 02.00.04 – физическая химия, 02.00.21 – химия твердого тела Санкович Анна Михайловна

Научный руководитель: д.х.н., проф. И.А. Зверева Официальные оппоненты: д.х.н., проф. М.Д. Бальмаков к.х.н., доцент И.А. Успенская Ведущая организация: Санкт-Петербургский государственный технологический институт (Технический университет)

Цель работы

Изучение механизма формирования катионоупорядоченных перовскитоподобных слоистых титанатов, их термической устойчивости и определение термодинамических свойств.

Задачи работы

Писследование процессов фазообразования, происходящих в системах Nd_2O_3 -TiO_2-Na_2O и Nd_2O_3 -TiO_2-K_2O в ходе синтеза слоистых оксидов $A_2Nd_2Ti_3O_{10}$ (A = Na, K), в сравнении с аналогичными процессами, наблюдаемыми для оксида NaNdTiO₄;

П Определение термической устойчивости соединений ANdTiO₄, NaGdTiO₄ и $A_2Nd_2Ti_3O_{10}$ (A = Na, K) в области высоких температур;

Интерпретация полученных экспериментальных данных по термической устойчивости с кристаллохимических позиций;

□ Определение теплоемкости соединений NaNdTiO₄ и Na₂Nd₂Ti₃O₁₀, расчет их термодинамических функций.

Экспериментальные методы Синтез:

- Керамическая технология (NaNdTiO₄ 780°C 2ч; NaGdTiO₄ 850° C 4ч; Na₂Nd₂Ti₃O₁₀ – 1100°C 3ч; K₂Nd₂Ti₃O₁₀ – 1000°C 3ч) Na₂CO₃ + 2 TiO₂ + Ln₂O₃ \rightarrow 2 NaLnTiO₄ + CO₂ A₂CO₃ + 3 TiO₂ + Nd₂O₃ \rightarrow A₂Nd₂Ti₃O₁₀ + CO₂
- Реакции ионного обмена (KNdTiO₄)

 $NaNdTiO_4 + HCI \rightarrow HNdTiO_4 + NaCI$

Исследованиет iO_4 + KOH \rightarrow KNdT iO_4 + H₂O

- Изотермический отжиг и закалка
- Рентгенофазовый анализ (дифрактометр Thermo ARL X'TRA)
- Термический анализ: ТГ, ДТГ, ДСК (синхронный термоанализатор STA 429 CD)
- Сканирующая электронная микроскопия (электронный микроскоп Carl Zeiss EVO 40EP)

Дифрактограммы реакционной смеси при синтезе Na₂Nd₂Ti₃O₁₀ в интервале 900–1100°С после трехчасовой термообработки

🛦 - NaNdTiO₄; 🔷 - наложение рефлексов NaNdTiO₄ на Na₂Nd₂Ti₃O₁₀ 6

Комплексный термический анализ смеси $Nd_2O_3 + 3 TiO_2 + Na_2CO_3$

Механизм образования $Na_2Nd_2Ti_3O_{10}$

Дифрактограммы реакционной смеси при синтезе K₂Nd₂Ti₃O₁₀ в интервале 900–1000°С после трехчасовой термообработки 1000°C 900°C 16 22 28 10 34 46 52 58 40 **2θ**, °

 \checkmark - Nd₂O₃; \diamond - наложение рефлексов Nd₂O₃ на K₂Nd₂Ti₃O₁₀ **11**

Механизм образования K_2Nd_2Ti_3O_{10}

600-650°C

$$1.64 \text{ K}_2\text{CO}_3 + 10 \text{ TiO}_2 \rightarrow \text{K}_2\text{Ti}_2\text{O}_5 +$$

700-750°C 750-850°C 850-900°C 850-1000°C

$$+ \mathbf{K}_{1.28} \mathbf{Ti}_{8} \mathbf{O}_{16} + 1.64 \text{ CO}_{2} + 0.32 \text{ O}_{2} \\ 2 \text{ K}_{2} \text{Ti}_{2} \text{ O}_{5} \rightarrow \text{ K}_{2} \text{Ti}_{4} \text{ O}_{9} + \text{ K}_{2} \text{ O} \\ \text{K}_{2} \text{Ti}_{4} \text{ O}_{9} + \text{Nd}_{2} \text{ O}_{3} \rightarrow 2 \text{ KNdTiO}_{4} + 2 \text{ TiO}_{2} \\ 2 \text{ KNdTiO}_{4} + \text{TiO}_{2} \rightarrow \text{ K}_{2} \text{Nd}_{2} \text{Ti}_{3} \text{ O}_{10} \\ \text{K}_{1.28} \text{Ti}_{8} \text{ O}_{16} + 2 \text{ Nd}_{2} \text{ O}_{3} + 2 \text{ K}_{2} \text{ O} + \\ \end{array}$$

+ 0.32
$$O_2 \rightarrow 2$$
 $K_2 Nd_2 Ti_2 O_{10}$
 $3 \frac{2}{3}$ 75

Дифрактограммы NaNdTiO₄ в интервале 900–1100°C после шестичасовой термообработки

Уравнение распада NaNdTiO₄ 8 NaNdTiO₄^{950-1100°C}Na₂Nd₂Ti₃O₁₀ + 2 Nd₂TiO₅ + $+ Nd_{2}Ti_{3}O_{9} + 6 Na + 1.5 O_{2}$ •••• **00**0 Na₂Nd₂Ti₃ Nd₂TiO₅ Nd₂Ti₃O **NaNdTiO** - NdO₆ • O²⁻; • TiO₆; 🖕 - Na¹⁺; 🛛 🔾 - Nd³⁺; - TiO₅; 15

Дифрактограммы Na₂Nd₂Ti₃O₁₀ в интервале 1100–1400°С после восьмичасовой термообработки

16

Уравнение распада KNdTiO₄

8 KNdTiO₄^{800-900°C}K₂Nd₂Ti₃O₁₀ + 2 Nd₂TiO₅ + Nd₂Ti₃O₉ +

Уравнение распада NaGdTiO₄

$6 \text{ NaGdTiO}_{4}^{1000-1050^{\circ}\text{C}} \text{ Na}_{2}\text{Gd}_{2}\text{Ti}_{3}\text{O}_{10} + \text{Gd}_{2}\text{TiO}_{5} +$

$+ \text{Gd}_2\text{Ti}_2\text{O}_7 + 4 \text{Na} + \text{O}_2$

Микроскопия поверхности образцов NaNdTiO₄ и Na₂Nd₂Ti₃O₁₀

NaNdTiO, и	сходный
------------	---------

NaNdTiO₄ разложившийся

Na₂Nd₂Ti₃O₁₀ разложившийся 24

Структурные характеристики исходных соединений и продуктов разложения

Соединение	Пространственная	Параметры элементарной ячейки, Å	Координационные числа	
			катионов	
	Группа		Ln ³⁺	Ti⁴⁺
NaNdTiO ₄	P4/nmm	a=3.7515; c=12.832; z=2		
KNdTiO ₄	Pbcm	a=13.1995; b=5.4030; c=5.4166; z=4	9	6
NaGdTiO ₄		a=12.473; b=5.3349; c=5.3361; z=4		
Na ₂ Nd ₂ Ti ₃ O ₁₀		a=3.8168; c=28.2816; z=2		
$K_2Nd_2Ti_3O_{10}$	I4/mmm	a=3.8494; c=29.572; z=2	12	6
Na ₂ Gd ₂ Ti ₃ O ₁₀		a=3.7872; c=28.2784; z=2		
Nd ₂ TiO ₅	Pnam	a=10.72; b=11.361; c=3.84; z=4	6	5
Nd ₂ Ti ₃ O ₉	I4/mmm	a=3.8334; c=24.363; z=2	12	6, 5
Nd _{2/3} TiO ₃	Pmmm	a=3.834; b=3.852; c=7.741; z=2	12	6
Nd ₂ Ti ₂ O ₇	P2 ₁	a=7.677; b=5.456; c=26.013; β=98.4; z=8	12	6
Gd ₂ TiO ₅	Pnam	a=10.479; b=11.328; c=3.7547; z=4	6	5
Gd ₂ Ti ₂ O ₇	Fd-3m	a=10.185; z=8	6	6

Анализ устойчивости слоистых структур Сравнение стабильности оксидов с n=1 и n=3

Различия в структуре Na- и K-, Nd- и Gdсодержащих оксидов

Фактор толерантности (t)

 $t = \frac{d(M - O)}{\sqrt{2}d(Ti - O)}$ d(M - O), d(Ti - O) - средние межатомные расстояния в полиэдрахMO₉ (NaO₉ или KO₉ и LnO₉) и TiO₆ соответственно

Исследование теплоемкости оксидов NaNdTiO₄ и Na₂Nd₂Ti₃O₁₀ в интервале 5–370 K

Принципиальная схема адиабатического калориметра ТАУ-10

1 – угольный адсорбер,

2 – вакуумный стакан,

3 – нижняя крышка адиабатического экрана,

4 – адиабатический экран,

5 – контейнер,

6 – основной нагреватель адиабатического экрана,

7 – железо-родиевый термометр сопротивления,

8 – нагревательная гильза,

9 – нейлоновые нити,

10 – вспомогательный нагреватель адиабатической оболочки,

11 – медный фланец,

12 – основная термопара (Cu+0.1%Fe)/хромель,

13 – нагреватель гильзы,

14 – вспомогательная термопара (Cu+0.1%Fe)/хромель.

$$T_{oбразца} = T_{oбoлoчкu}$$

 $C_{oбpaзцa} = \frac{Q}{\Delta T} - C_{nycm.кoнmeйнepa} - C_{uhd.npokлadku}$

Погрешность измерения теплоемкости:

5-10 К - не более 2%, 10-20 К - 1%, выше 20 К - 0.4%.

Обработка данных калориметрических измерений

$$(1) C_p = \sum_{i=0}^4 a_i T^i$$

а, – коэффициенты полиномиальных зависимостей

Экстраполяция теплоемкости к $T \rightarrow 0$ K

При низких температурах

 $C_{_V} \boxtimes T^3$ – закон Дебая

(2)
$$D\left(\frac{T}{\vartheta_D}\right) = 3\left(\frac{T}{\vartheta_D}\right)^3 \int_0^{\frac{\vartheta_D}{T}} \frac{x^3}{e^x - 1} dx$$

(3)
$$C_p \approx R = \mathcal{D}\left(4 \left(\frac{T}{\vartheta_D}\right) - \frac{3\frac{\vartheta_D}{T}}{e^{\frac{\vartheta_D}{T}} - 1}\right)$$

D – функция Дебая с тремя степенями свободы ϑ_D – характеристическая температура Дебая x – переменная интегрирования

для NaNdTiO₄
$$\vartheta_D = 133.8 \text{ K}$$

для Na₂Nd₂Ti₃O₁₀ $\vartheta_D = 128.8 \text{ K}$

Расчет термодинамических функций в интервале 5–370 К

$$C_p^\circ = \sum_{i=0}^4 a_i T^i$$

$$\Delta H^{\circ} = \int_{T_1}^{T_2} C_p^{\circ} dT = \sum_{i=1}^4 \frac{a_{i-1}}{i} (T_2^i - T_1^i)$$

$$\Delta S^{\circ} = \int_{T_1}^{T_2} \frac{C_p^{\circ}}{T} dT = a_0 ln \frac{T_2}{T_1} + \sum_{i=1}^4 \frac{a_i}{i} (T_2^i - T_1^i)$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

Температурные зависимости стандартных мольных термодинамических функций. 1 – NaNdTiO₄; 2 – Na₂Nd₂Ti₃O₁₀

Аномальное изменение теплоемкости с температурой

Аномалия теплоемкости Na₂Nd₂Ti₃O₁₀ ниже 7.4 К: теплоемкость становится возрастающей функцией температуры.

- о эксперимент,
- ···· расчет по закону Дебая.

Фазовый переход второго рода: переход парамагнетик – антиферромагнетик в результате упорядочения магнитных моментов парамагнитных ионов Nd³⁺.

Аддитивность термодинамических функций слоистых оксидов

 $C_p^{\circ}(\operatorname{Na}_2\operatorname{Nd}_2\operatorname{Ti}_3\operatorname{O}_{10}) = 2C_p^{\circ}(\operatorname{NaNdTiO}_4) + C_p^{\circ}(\operatorname{TiO}_2)$. NaNdTiO₄ $\mathbf{0}$ $\bigcirc \bigcirc$ Na₂Nd₂Ti₃O₁₀ TiO,

 $\Delta H^{\circ}(\mathrm{Na}_{2}\mathrm{Nd}_{2}\mathrm{Ti}_{3}\mathrm{O}_{10}) = 2\Delta H^{\circ}(\mathrm{NaNdTiO}_{4}) + \Delta H^{\circ}(\mathrm{TiO}_{2})$ $S^{\circ}(\text{Na}_{2}\text{Nd}_{2}\text{Ti}_{3}\text{O}_{10}) = 2S^{\circ}(\text{NaNdTiO}_{4}) + S^{\circ}(\text{TiO}_{2})$

	$C_p^o, rac{\mathcal{Д} arkappa}{{}_{MOЛb} \cdot K}$	$\Delta H^{o}, rac{\mathcal{J} \mathcal{H}}{_{MOЛB}}$	$S^{o}, \frac{\mathcal{J}\mathcal{K}}{_{MOЛb}\cdot K}$
NaNdTiO ₄	152.3	27528	176.4
TiO ₂	55.02	8627	50.33
Na ₂ Nd ₂ Ti ₃ O ₁₀ эксперимент	351.5	61866	392.6
Na ₂ Nd ₂ Ti ₃ O ₁₀ расчет	359.6	63684	403.1

Выводы

- □ Исследованы температурные интервалы фазовых превращений в системах Na₂CO₃-TiO₂-Nd₂O₃ и K₂CO₃-TiO₂-Nd₂O₃. Установлен структурно-химический механизм образования катионоупорядоченных перовскитоподобных слоистых оксидов Na₂Nd₂Ti₃O₁₀ и K₂Nd₂Ti₃O₁₀, кристаллизующихся в структурном типе Sr₄Ti₃O₁₀. Обнаружено, что формирование трехслойных структур происходит через промежуточные продукты, которые также имеют отношение к структуре перовскита. Выявлено, что общей стадией для обоих соединений является образование конечного продукта из однослойного оксида и диоксида титана при температурах 960°C (Na₂Nd₂Ti₃O₁₀) и 850°C (K₂Nd₂Ti₃O₁₀).
- □ Найдены температурные интервалы устойчивости соединений ALnTiO₄ и A₂Nd₂Ti₃O₁₀ (A=Na, K; Ln=Nd, Gd) со структурой K₂NiF₄ и Sr₄Ti₃O₁₀, и установлен механизм их распада. Выявлена идентичность механизмов распада фаз NaNdTiO₄ и KNdTiO₄, а также Na₂Nd₂Ti₃O₁₀ и K₂Nd₂Ti₃O₁₀, позволяющая предположить о возможности реализации этого механизма и в других изоструктурных перовскитоподобных титанатах с n=1 и n=3.
- □ Установлено, что самым нестабильным из исследованных соединений является KNdTiO₄, претерпевающий распад уже при температуре 800°C. Оксид NaNdTiO₄ устойчив до 900°C, при 1100°C NaNdTiO₄ полностью превращается в продукты распада Na₂Nd₂Ti₃O₁₀, Nd₂TiO₅, Nd₂Ti₃O₉. Оксид NaGdTiO₄ в ряду устойчивости ALnTiO₄ (A=Na, K; Ln=Nd, Gd) занимает промежуточное положение и разлагается при 1000–1050°C на Na₂Gd₂Ti₃O₁₀, Gd₂TiO₅ и Gd₂Ti₂O₇. Соединения Na₂Nd₂Ti₃O₁₀ и K₂Nd₂Ti₃O₁₀ более устойчивы к термическому воздействию и распадаются в интервале 1200–1400°C на Nd_{2/3}TiO₃ и Nd₂Ti₂O₇.
- □ Кристаллохимический анализ различий структуры соединений NaNdTiO₄ и Na₂Nd₂Ti₃O₁₀ показал определяющую роль координационного окружения атомов неодима и длины мостиковой связи, соединяющей слои перовскита и каменной соли, для термической устойчивости исследованных оксидов. В случае оксидов NaNdTiO₄ и KNdTiO₄, NaNdTiO₄ и NaGdTiO₄ на термическое поведение сильное влияние оказывает отклонение от тетрагональной симметрии.
- □ Проведено калориметрическое исследование соединений NaNdTiO₄ и Na₂Nd₂Ti₃O₁₀ в интервале температур 5–370 К. При температурах ниже 7.4 К на кривой температурной зависимости теплоемкости оксида Na₂Nd₂Ti₃O₁₀ обнаружена аномалия (увеличение теплоемкости с понижением температуры).
- □ Рассчитаны термодинамические функции оксидов NaNdTiO₄ и Na₂Nd₂Ti₃O₁₀ (теплоемкость, энтальпия, энтропия, энергия Гиббса). Впервые показано, что теплоемкость, энтальпия и энтропия трехслойных титанатов могут быть определены из соответствующих величин однослойных титанатов и диоксида титана.