Программа фундаментальных исследований Президиума РАН № 27 «ОСНОВЫ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ НАНОТЕХНОЛОГИЙ И НАНОМАТЕРИАЛОВ»

Проект: Разработка электронных нанотранзисторов и переключателей на базе многоядерных металлокластеров с варьируемым состоянием окисления

Научный руководитель проекта: Габуда Святослав Петрович (Институт неорганической химии им. А.В. Николаева СО РАН)

Первая модель одноэлектронного транзистора на базе одиночной молекулы с переменным состоянием окисления (2003 г.)

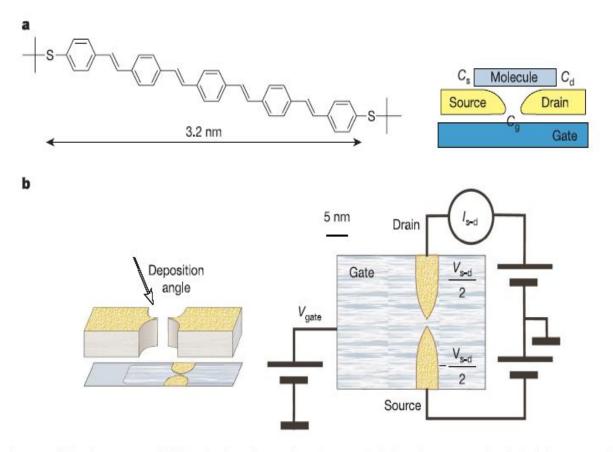
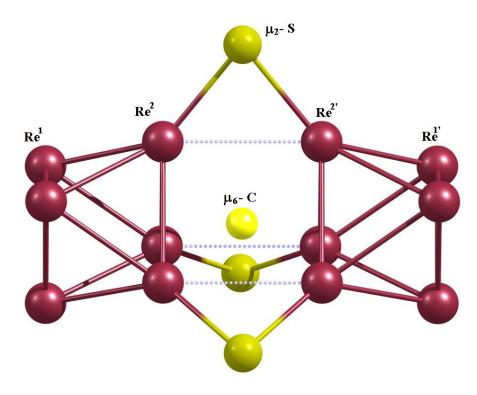
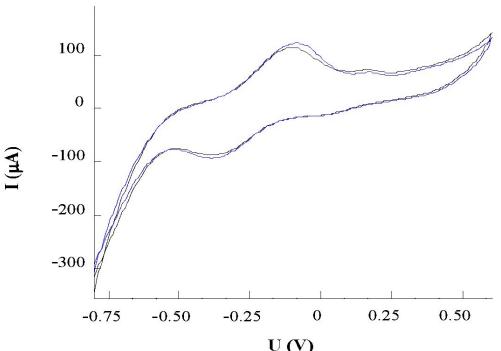



Figure 1 Device and experiment. a, Molecular structure of OPV5 and schematic experimental set-up. b, Schematic representation of the device preparation procedure.

Молекула: олигомер, состоящий из 5 бензольных колец, соединенных четырьмя двойными связями (р-фенилен-винилен) (NATURE 425, 698-701(2003)

Разработанный в ИНХ СО РАН нанотранзистор на базе углерод-центрированного

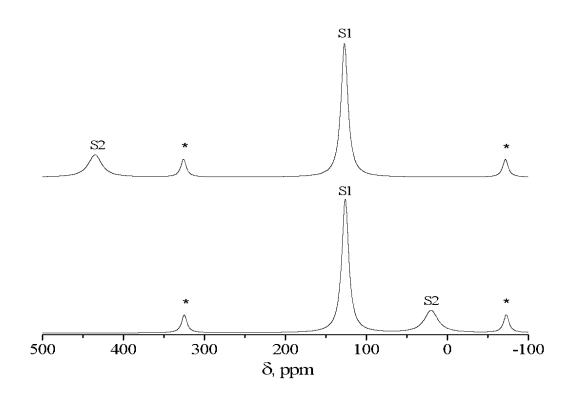
металлокластера $[Re_{12}CS_{17}(CN)_6]^{n-}$ с состоянием окисления n=6 и 8



Межатомные расстояния в комплексе $[Re_{12}CS_{17}(CN)_6]^{n-}$

n	Re ¹ -Re ¹	Re ¹ -Re ²	Re ² -Re ²	Re ² -Re ²	Re ² -C	Re ² -S
8	2.595	2.591	2.622	3.168	2.179	2.425
6	2.600	2.692	2.630	2.901	2.126	2.378
ΔR	+0.005	+0.101	+0.008	-0.267	-0.053	-0.047

Обратимые редокс-превращения (Cyclic voltammogram)


в 12-ядерном Re-кластере

U(V) Редокс-превращения комплекса $K_6[Re_{12}CS_{17}(CN)_6]$ в 0.1М Na_2HPO_4 , зарегистрированные в интервале от 0.6 до -0.8 В со скоростью сканирования 100 mV · s⁻¹ (2-й и 4-й циклы).

Электрод сравнения – Ag/AgCl, измерительный электрод – аморфный углерод

Аномальный (в ~20 раз) скачок магнитного поля, наблюдаемый для центрального атома углерода при изменении степени окисления 6↔8. Скачок характерен для переходов металл-диэлектрик

 13 С ЯМР спектры кластерных соединений $\rm K_8Re_{12}CS_{17}(CN)_6 \cdot 20H_2O$ (внизу) и $\rm K_6Re_{12}CS_{17}(CN)_6$ (сверху). Сателлитные сигналы от вращения образца отмечены *

Выводы

- Разработан принципиально новый вариант одномолекулярного транзистора на базе 12-ядерного рениевого металлокластера с варьируемым состоянием окисления
- Показано, что переходы с изменением состояния окисления (n=6 \leftrightarrow 8) соответствуют отрыву и присоединению пары электронов в комплексе $[\mathrm{Re}_{12}\mathrm{CS}_{17}(\mathrm{CN})6]^{\mathrm{n-}}$
- Показано, что в окисленном состоянии комплекса (n=6) межкластерные расстояния Re-Re оказываются на $\sim 0.3 \text{Å}$ короче, чем в комплексах $[\text{Re}_{12}\text{CS}_{17}(\text{CN})_6]^{8-}$.
- Показано, что в окисленном состоянии сигнал S2 сдвинут в сторону слабого магнитного поля за пределы стандартной шкалы химических сдвигов ¹³С ЯМР типичных соединений углерода, составляющей около 200 м.д., а его значение (~420 м.д., или 0,04% от напряженности внешнего магнитного поля) характерно для соединений с металлическим характером химической связи.