

Основные проблемы

- Отклонение напряжения
- Колебания напряжения
- Несимметрия напряжения
- Несинусоидальность напряжения
- Гармоники

Отклонение напряжения

Влияние отклонения напряжения на работу электрооборудования:

Технологические установки:

- ✓ При снижении напряжения существенно ухудшается технологический процесс, увеличивается его длительность, следовательно, увеличивается себестоимость производства.
- При повышении напряжения снижается срок службы оборудования, повышается вероятность аварий
- При значительных отклонениях напряжения происходит срыв технологического процесса

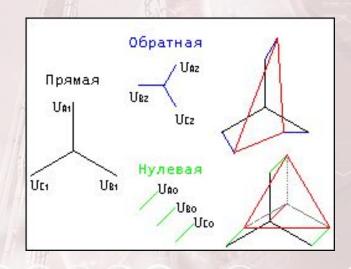
Свещение:

- ✔ Снижается срок службы ламп освещения, так при величине напряжения 1,1. U_{ном} срок службы ламп накаливания снижается в 4 раза
- ✓ При величине напряжения $0,9 \cdot U_{\text{ном}}$ снижается световой поток ламп накаливания на 40 % и люминесцентных ламп на 15 %
- ✓ При величине напряжения менее 0,9·U_{ном} люминесцентные лампы мерцают, а при 0,8·U_{ном} просто не загораются

• Электропривод:

- ✓ При снижении напряжения на зажимах асинхронного электродвигателя на 15 % момент снижается на 25 %. двигатель может не запуститься или остановиться
- ✓ При снижении напряжения увеличивается потребляемый от сети ток, что влечёт разогрев обмоток и снижение срока службы двигателя. Перегрев сверх допустимого на каждые 8-10°С сокращает срок службы изоляции обмоток электродвигателя в 2 раза
- ✓ При повышении напряжения на 1 % потребляемая двигателем реактивная мощность увеличивается на 3...7 %

Среднее распределение потерь от высших гармоник характеризуется следующими данными: обмотки статора — 14%, цепи ротора — 41%. Токи гармоник в статоре машины вызывают движущую силу, тем самым приводит к вибрации вала двигателя.


Колебания напряжения

- Влияние колебаний напряжения на работу электрооборудования:
 - ✓ снижается срок службы оборудования;
 - ✓ перегрев оборудования;
 - ✓ пожароопасность;
 - ✓ понижается КПД двигателя;
 - ✓ вибрация в электромашинных системах;
 - ✓ вызывают брак продукции;
 - ✓ ошибки срабатывания автоматических выключателей;
 - ✓ ошибки в коммуникационном оборудовании;
 - пульсация светового потока ламп освещения;

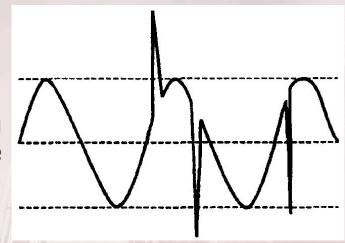
Несимметрия трёхфазной системы

Источниками несимметрии:

- □ дуговые сталеплавильные печи,
- □ тяговые подстанции переменного тока,
- электросварочные машины,
- □ специальные однофазные нагрузки,
- □ осветительные установки,

Так суммарная нагрузка отдельных предприятий содержит $85...90\,\%$ несимметричной нагрузки. А коэффициент несимметрии напряжения по нулевой последовательности (K_{0U}) одного 9-и этажного жилого дома может составлять $20\,\%$, что на шинах трансформаторной подстанции (точке общего присоединения) может обусловить превышение нормально допустимые $2\,\%$.

Влияние несимметрии напряжений на работу электрооборудования:


- ✓ Однофазные, двухфазные потребители и разные фазы потребителей электроэнергии работают на различных не номинальных напряжениях, что вызывает те же последствия, как при отклонении напряжения.
- ▶ В электродвигателях, кроме отрицательного влияния не несимметричных напряжений, возникают магнитные поля, вращающиеся встречно вращению ротора.
- ✓ Общее влияние несимметрии напряжений на электрические машины, включая трансформаторы, выливается в значительное снижение срока их службы.

Например, при длительной работе с коэффициентом несимметрии по обратной последовательности $K_{2U}=2...4\%$, срок службы электрической машины снижается на 10...15%, а если она работает при номинальной нагрузке, срок службы снижается вдвое.

Несинусоидальность напряжения

Электроприёмники с нелинейной вольт амперной характеристикой потребляют ток, форма кривой которого отличается от синусоидальной.

А протекание такого тока по элементам электрической сети создаёт на них падение напряжения, отличное от синусоидального, это и является причиной искажения синусоидаль - ной формы кривой напряжения.

<u>Источниками несинусоидальности являются</u>:

- □ синхронные двигатели;
- □ осветительные приборы;
- □ сварочные установки;
- □ офисная и бытовая техника;
- □ дуговые сталеплавильные и индукционные печи;
- □ трансформаторы;
- □ статические преобразователи;

- Влияние несинусоидальности напряжения на работу электрооборудования:

Так, при коэффициенте искажения синусоидальной формы кривой напряжения $K_U = 10 \%$ суммарные потери в сетях предприятий, крупных промышленных центров могут достигать 10...15 %.

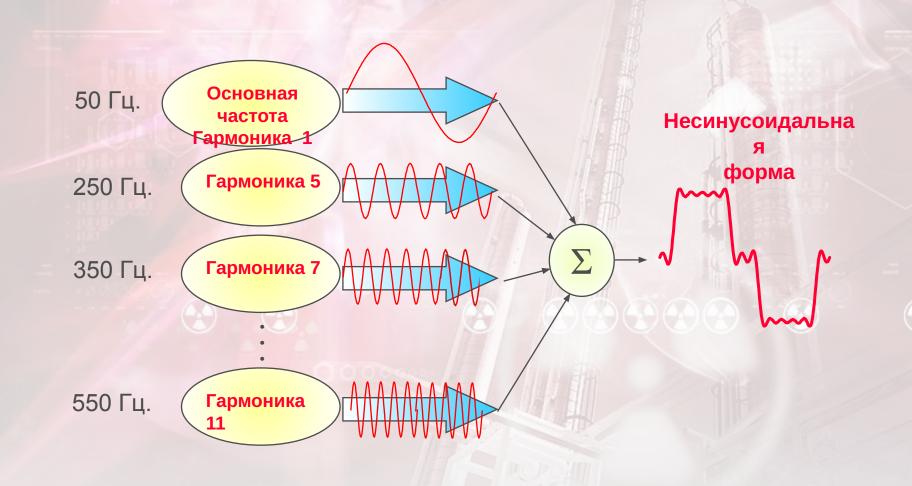
- учащаются ложные срабатывания устройств управления и защиты, приводящие к приостановке технологического процесса;
- ✓ выводят из строя компьютеры, мэйнфрэймы, устройства сбора и передачи информации;
- оказывают воздействие на изоляцию кабельных линий и линий электропередач;
- приводят к учащению однофазных коротких замыканий на землю;
- приводят к пробою конденсаторов;

Гармоники тока и напряжения

• Эффекты, вызываемые гармониками

Проблемы мгновенного возникновения включают:

- □ искажение формы питающего напряжения;
- падение напряжения в распределительной сети;
- наводки в телекоммуникационных и управляющих сетях;
- □ повышенный акустический шум в электромагнитном оборудовании;
- □ вибрация в электромагнитных системах;

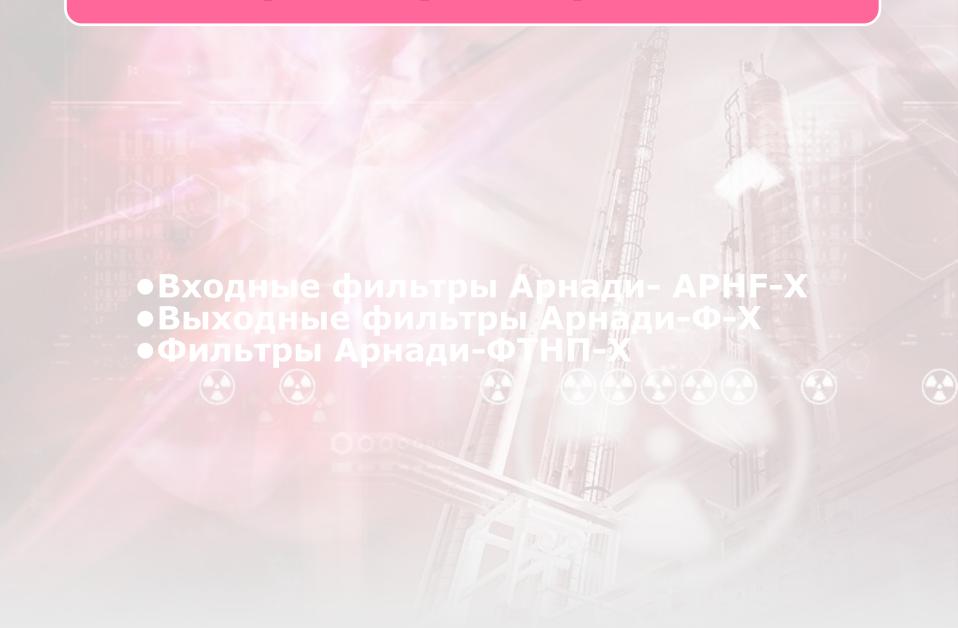

Проблемы длительного возникновения включают:

- □ дополнительные потери в трансформаторах;
- нагрев в трансформаторах и электрических машинах;
- □ нагрев конденсаторов;
- □ нагрев кабелей распределительной сети;

Гармоники сетевой частоты неблагоприятно влияют на работу кабельных линий, конденсаторов, измерительных приборов и защитных реле.

Системы и компоненты	Последствия влияния гармоник	
Электродвигатели	увеличение шума при работе, перегрев, избыточная вибрация	
Конденсаторные батареи	перегрев, пробой изоляции, перегорание встроенных предохранителей	
Защитное оборудование	ложные срабатывания, отсутствие срабатывания	
Измерительные приборы	неточность, ошибки измерений	
Трансформаторы и реакторы	перегрев	
Автоматические выключатели	сбой в работе	
Телефоны	шумы на частотах гармоник сетевого напряжения	
Кабельные линии и линии электропередач	перегрев	
Электронные приборы	сбой при передаче и обработке данных, избыточное, либо недостаточное напряжение, мерцание экранов	
Лампы накаливания	уменьшение долговечности, мерцание	

Гармонические искажения и несинусоидальность


Основные возмущения:

- Провал напряжения. Включение большой нагрузки, аварии в электросетях;
- Выброс напряжения. Аварии в электросетях, неправильное подключение выводов понижающих трансформаторов;
- Импульсная помеха. Грозовой разряд, коммутация индуктивных нагрузок;
- Осциллирующая помеха. Включение конденсаторов для коррекции мощности или феррорезонанса трансформаторов;
- □ Прерывание;
- □ Просечки напряжения. Коммутация диодов выпрямителях;
- Флуктуация напряжения. Электродуговые печи и устройства,
 где ток потребления не синхронизирован с сетевой частотой;
- □ Разбаланс напряжения. Различие нагрузок по разным фазам;

Преимущества установки фильтра на стороне (0.4кВ)

- □ Гармоники гасятся в месте их формирования и следовательно не оказывают влияния на работу других устройств включенных в эту сеть (силовые кабеля, контроллер СУ, ПП СУ, ТМПН, двигатель);
- □ Гармоники не попадают в трансформаторы и следовательно происходит экономия затрат на электроэнергию, уменьшается нагрев трансформаторов и увеличивается их срок службы;
- Возможность увеличение загрузки ТП без ее замены высвобождением реактивной мощности;

Виды фильтров Арнади:

Входной фильтр

Назначение:

Входной сетевой пассивный фильтр предназначен для подавления гармоник тока, в сетях с нелиней-

ными нагрузками; частотно-регулируемыми электроприводами, тиристорными приводами постоянного тока, мощными выпрямителями и другими устройствами.

Место расположения фильтра, перед нелинейной нагрузкой, как дополнительное,

последовательное

Устройство в отдельном шкафу уличного или внутреннего исполнения, либо входит составной частью в шкаф комплектного привода.

Выходной фильтр

Назначение:

Фильтр выходной предназначен для подавления гармоник тока несущей частоты в сетях с нели нейными нагрузками; частотно регулируемыми электроприводами, тиристорными приводами постоянного тока, мощными выпрямителями и другими устройствами.

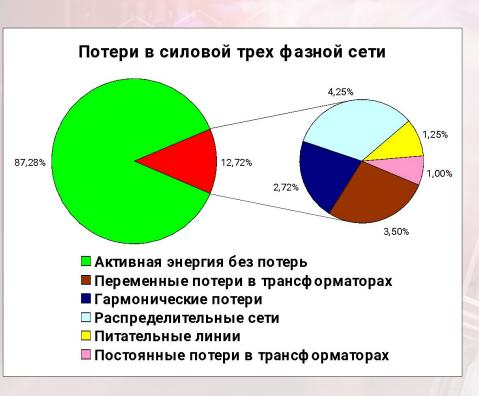
Подключение:

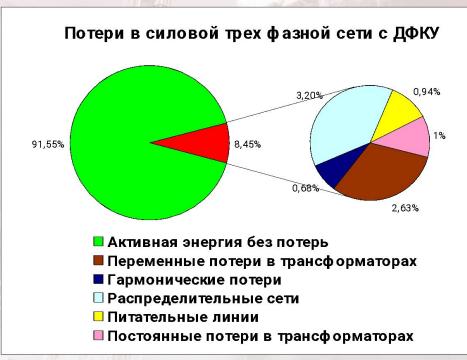
Фильтр замыкает цепочку между выходом СУ счастотным преобразователем и повышающим трансформатором ТМПН. Номинальный ток цепи фильтра должен соответствовать номинальному току станции управления.

Фильтр для сетей с нелинейной нагрузкой

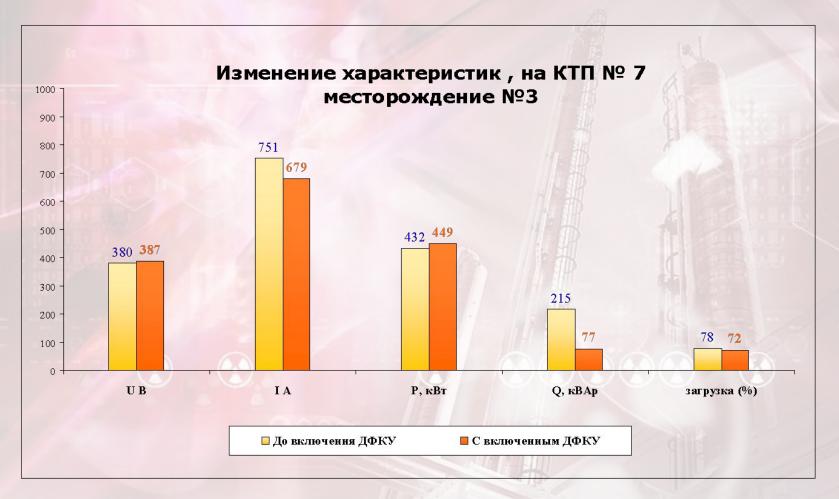
Назначение:

Фильтр тока нулевой последовательности Арнади ФТНП-Х предназначен для подавления несимметрической низко - частотной помехи в сети, как средство ТЗИ; подавления импульсной помехи природного (грозового и коммута - коммутационного) или преднамеренного происхождения (сварка и т.д.) в напряжениях сети, как средство ТЗИ; повышения надежности электроснабжения, в том числе и при разрыве провода одной из линейных фаз.


Подключение:


Устанавливается в параллель нелинейной нагрузки, как дополнительное устройство в отдельном шкафу уличного или внутреннего исполнения.

Эффективность внедрения фильтра Арнади в нефтяной отрасли


Результат внедрения

- □ Уменьшение гармонических искажений
- □ Снижением потерь обусловленных воздействием гармоник
- □ Уменьшение загрузки ТП
- □ Уменьшение затрат на электроэнергию

Изменение характеристик до и после установки фильтра

Применение фильтра позволило снизить реактивную энергию на 138 кВАр (уменьшив загрузку с 78% до 72%).

Период	Кол. монтаже		Экономия (тыс.руб.)	Экономия эл. энергии (тыс.кВт.ч) в среднем на 1 фил. в месяц	эл. энергии в месяц на 1	Срок окупаем. 1-го фил.
2010 (9месяцев)	33	6054	15135,0 0	20,4	50,96	6,9
2011 (2 месяца)	11	611	1527,50	27,8	69,43	5,0
Итого:	44	6665	16662,5	24,1	60,20	5,8

Средний срок окупаемости одного Фильтра (при стоимости 500 тыс. рублей) составляет – 6 месяцев.

За 9 месяцев 2010 года в результате внедрения, экономия электроэнергии составила – 6054 тыс.кВт.час.(33 Фильтра). За 2 месяца 2011 года экономия – 611 тыс.кВт час.(11 Фильтров). В сумме экономия электроэнергии составила 6665 тыс.кВт.ч, или 16,6 млн. рублей

