Институт космических исследований РАН

ГЕОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ЭВОЛЮЦИИ И ВРЕМЕНИ БАЛЛИСТИЧЕСКОГО СУЩЕСТВОВАНИЯ ЭЛЛИПТИЧЕСКИХ ОРБИТ, ИСПЫТЫВАЮЩИХ ГРАВИТАЦИОННОЕ ВОЗМУЩЕНИЕ СО СТОРОНЫ ВНЕШНИХ ТЕЛ

> В.И. Прохоренко vprokhor@iki.rssi.ru

> > Ноябрь 2001

СОДЕРЖАНИЕ

- Интегралы для спутникового варианта пространственной ограниченной круговой задачи трех тел
- Геометрическое исследование интегралов с1, с2
- Учет конечного размера центрального тела
- Отображение начальных условий в область значений констант с₁, с₂
- Примеры выбора орбит с учетом проблемы соударения с центральным телом
- Анализ периода эволюции и времени баллистического существования
- Примеры выбора орбит с учетом времени баллистического существования
- Сопоставление численных и аналитических расчетов времени баллистического существования на примере орбиты Хвостового зонда проекта ИНТЕРБОЛ

Интегралы для спутникового варианта пространственной ограниченной круговой задачи трех тел, полученные М.Л. Лидовым в 1961

- $c_0 = a;$
- $\mathbf{c}_1 = \varepsilon \cos^2 i;$
- $\mathbf{c}_2 = (1 \varepsilon) (2/5 \sin^2 \omega \sin^2 i)$
 - *а* большая полуось орбиты ИСЗ; $\varepsilon = 1 e^2$; *е* эксцентриситет;
 - *i* наклонение орбиты ИСЗ к плоскости орбиты возмущающего тела;
 - Ф аргумент перицентра, измеренный от линии узлов на плоскости орбиты возмущающего тела.
 - $\mathbf{c}_0 = a_0; \, \mathbf{c}_1 = \varepsilon_0 \cos^2 i_0; \, \mathbf{c}_2 = (1 \varepsilon_0) (2/5 \sin^2 \omega_0 \sin^2 i_0) (4)$

(1)

(2)

(3)

Сферическая система координат

- Начало совпадает с притягивающим центром S
- радиус с параметром ε (0 $\leq \varepsilon \leq 1$);
- ко-широта с наклонением *i* (0 ≤ 180°);
- долгота с аргументом перицентра ω ($0 \le \omega \le 360^\circ$).

Соответствующая прямоугольная система координат

- Плоскость ОХZ параллельна плоскости орбиты возмущающего тела J;
- Экваториальная плоскость ОХҮ перпендикулярна к плоскости орбиты возмущающего тела;
- Ось ОУ направлена по нормали к плоскости орбиты возмущающего тела.

Геометрическое исследование интегралов с₁, с₂

Сечения поверхностей с = const диаметральными плоскостями: $\omega = 0^{\circ}, 180^{\circ}$ (a) $\omega = 90^{\circ}, 270^{\circ}$ (б)

Линии $C_2 = const$ на поверхностях: $C_1 = 0.2$ (в) $C_1 = 0.7$ (г)

 $\omega = 90^{\circ}$

c, = | 0.00

510

8

 $c_1 = 0.20$

-0.11≦c.≦0.32

ſġ°

0 ≦ 4 ≦ 63°

0.20 ≦ ε ≦ 1

6

Учет конечного размера центрального тела

- Формула М.Л. Лидова для вычисления значения ε*, соответствующего соударению с центральным телом радиуса R орбиты с большой полуосью *a*: R_p = R; e = 1-R/a; ε* = 1 - (1-R/a)²
- Введем безразмерный параметр $a_* = a / R$, тогда $\epsilon^* = (2a_* 1)/a_*^2$

(5)

(6)

Косой штриховкой показаны области значений с₁, с₂, соответствующие орбитам с конечным временем баллистического существования

• при $a_* = 8$

• при $a_* = 16$

Эволюция орбит с конечным временем баллистического существования

•
$$a_* = 8$$

• $c_1 = 0.1, c_2 = 0.1$

•
$$c_1 = 0.1, c_2 = -0.1$$

- Пересечения поверхности с₁ = 0.1 со сферами радиуса є^{*} и є₀ показано соответственно утолщенной и пунктирной линиями.
- Точки старта показаны светлыми символами
- точки падения темными

К выбору орбит с учетом проблемы соударения с центральным телом (1)

- $a = 8 R_{E},$ = 5000 km, 0.777, $\varepsilon_{0} = 0.4$
- $i_0 = 45^\circ, \, \omega_0 = -90^\circ$
- $i_0 = 45^\circ$, $\omega_0 = -45^\circ$
- $i_0 = 60^\circ, \omega_0 = -30^\circ$
- Штриховкой отмечена область значений с₁, с₂, которым соответствуют орбиты с конечным временем баллистического существования

Период эволюции и время баллистического существования

Для вычисления времени баллистического существования орбит, эволюция которых заканчивается соударением с центральным телом, также как и для вычисления периода эволюции, в дополнение к интегралам (1), (2), (3), будем пользоваться полученной М.Л Лидовым квадратурой:

$$N - N_0 = -\frac{1}{A} \int_{\varepsilon_0}^{\varepsilon} \frac{d\varepsilon}{(1 - \varepsilon)} \frac{d\varepsilon}{\varepsilon^{1/2} \sin^2 i \sin 2\omega},$$

$$A = \frac{15\pi}{2} \frac{M_k}{M} (\frac{a}{a_k})^3 \varepsilon_k^{-3/2}, (8)$$

где N – порядковый номер оборота спутника, M – масса центрального тела; M_k, a_k, ε_k – соответственно масса, большая полуось и параметр ε орбиты возмущающего тела.

Период эволюции и время баллистического существования

Для вычисления периода используются пределы интегрирования ε_{\min} , ε_{\max} , а для вычисления времени баллистического существования - ε_0 , ε^* .

Будем пользоваться полученным в известной работе Ю.Ф. Гордеевой 1968 г выражением этой квадратуры через эллиптический интеграл первого рода. Обозначим |L_c|удвоенную квадратуру, вычисленную в Пределах ε_{min} , ε_{max} , и, следуя работе Ю.Ф. Гордеевой, запишем выражение для периода Т эволюции орбитальных элементов *е, i,* умножив слева и справа выражение (7) на кеплеров период обращения точки Р по ее орбите:

$$T = \frac{2\pi a^{3/2}}{\sqrt{\mu}} \frac{|\text{Lc}|}{A} .(9)$$

Рассмотрим как выглядит функции |L_c|(c₁, c₂) в области возможных значений этих параметров.

Сечение поверхности $|L_c (C_2, C_1)$ плоскостями $C_1 = const$

6

Время баллистического существования

Обозначим L_r (c₁, c₂, a, ε₀, ω₀) неполный эллиптический интеграл первого рода, соответствующий квадратуре (7), ВЫЧИСЛЕННОЙ В ПРЕДЕЛАХ ε₀, ε* (исходя из начального значения ω₀). Аналогично выражению (9) запишем выражение для времени баллистического существования T_r:

$$T_r = \frac{2\pi a^{3/2}}{\sqrt{\mu}} \frac{L_r}{A} (10)$$

Мажорантой для функции $L_r(c_1, c_2, a, \varepsilon_0, \omega_0)$ является функция $L_b(c_1, c_2, a)$, вычисленная в пределах ε^* , ε^* (исходя из начального значения ω_0 , принадлежащего II или IV четверти). Имеет место следующее очевидное неравенство:

 $L_{r}(c_{1}, c_{2}, a, \varepsilon_{0}, \omega_{0}) < L_{b}(c_{1}, c_{2}, a) < |L_{c}|(c_{1}, c_{2})$ (11) Рассмотрим как выглядит функция $L_{b}(c_{1}, c_{2}, a)$ в области возможных значений параметров c_{1}, c_{2} ПРИ a = 8 R.

К выбору орбит ИСЗ с учетом C_1 длительности баллистического существования 0.8 • $a = 8 R_{E}, h_{p0} = 5000 \text{KM}, e_{0} = 0.777. \epsilon_{0} = 0.4$ 0.6 • $i_0 = 45^\circ$, $\omega_0 = -90^\circ$, Lc = -10.2 • $i_0 = 45^\circ$, $\omega_0 = -45^\circ$, Lc = 9 • $i_0 = 60^\circ$, $\omega_0 = -30^\circ$, Lb = 615,165 Линии уровня показывают 0°,150° значения параметров L_b для орбит с конечным временем 450,135° баллистического существования и | L | для 60°, \20° остальных орбит 75°,105°C -0.2 ol_2 ±60° ω₀=±90° ±30° n٩ ±120° ±150° 180°

18

Анализ периода эволюции элементов орбиты и времени баллистического существования

 Преобразуем выражение (9) для периода Т, чтобы более выпукло показать роль остальных сомножителей

$$T = \frac{4}{15} \mu^{1/2} \frac{a_k^3 \varepsilon_k^{3/2}}{\mu_k} |L_c| a^{-3/2}$$

• Введем характерный размер *l*, характерное время *т* и безразмерные переменные:

$$a_* = a/l; \quad T_* = T/\tau; \quad \mu_* = \mu \tau^2/l^3$$

- Введем следующие безразмерные параметры:
- параметр подобия орбит $L_{T} = L_{c} a_{*}^{-3/2}$;
- параметр подобия возмущений $D_{\rm D} = \mu_{*k} a_{*k}^{-3} \epsilon_{k}^{-3/2} / \mu_{*}^{1/2}$

(12)

Анализ периода эволюции элементов орбиты и времени баллистического существования

 Запишем выражение безразмерного периода Т_{*} через |L_c | и параметр подобия возмущений L_D:

$$T_* = \frac{4}{15} \frac{|L_c|}{L_D} a_*^{-3/2}$$

• Далее, выразим T_{*} через $|L_c|$ и безразмерный коэффициент Q: $T_* = Q |Lc|, \ Q = \frac{4}{15} \frac{a_*^{-3/2}}{L_D}$ (14)

(13)

Анализ периода эволюции элементов орбиты и времени баллистического существования

 Введем следующие численные значения характерного размера *l* = R_E = 6371.2 км и времени т =365 сут

- В таблице 1 приведены численные значения параметра подобия возмущений L_D для систем:
 - Земля Луна ИСЗ,
 - Земля Солнце ИСЗ,
 - Земля Луна + Солнце ИСЗ.
- А также численные значения коэффициента Q для двух значений большой полуоси:
 - $a_* = 8$,
 - $a_* = 16.$

Таблица 1. Численные значения параметра подобия возмущений L_D и коэффициента Q

Система тел	Земля - Луна - ИСЗ	Земля - Солнце - ИСЗ	Земля - Луна + Солнце - ИСЗ
L _D	0.00219	0.00101	0.00320
<i>Q</i> при <i>a</i> _* = 8	5.37490	11.7039	3.48335
<i>Q</i> при <i>a</i> _* = 16	1.90031	4.13794	1.30226

ИНТЕРБОЛ ХВОСТОВОЙ ЗОНД *a*_{*} = 16.12, ε* = 0.12, L = 6.42, L = 4.11 (03/08/1995 - 16/10/2000)^b

Эволюция радиуса перигея и время существования, рассчитанные с учетом гравитационных возмущений от Луны (М) и Солнца (S) отдельно и совместно (T)

ИНТЕРБОЛ ХВОСТОВОЙ ЗОНД *a*_{*} = 16.12, ε* = 0.12, L_c = 6.42, L_b = 4.11 (03/08/1995 - 16/10/2000)

Таблица 2. Значения времени баллистического существования (в годах), рассчитанные численно и аналитически

Метод расчета	С учетом возмущения от Луны	С учетом возмущения от Солнца	С учетом возмущения от Луны и Солнца
Численный	7.60	18.00	5.20
Аналитический	7.72	16.80	5.29

Список литературы

- Лидов М.Л. Эволюция орбит искусственных спутников планет под действием гравитационных возмущений внешних тел // Искусственные спутники Земли. 1961. № 8. С. 5
- Моисеев Н.Д. О некоторых основных упрощенных схемах небесной механики, получаемых при помощи осреднения ограниченной круговой проблемы трех точек // Труды ГАИШ. 1945. Т. 16. Ч.1 с 100
- 3. Гордеева Ю.Ф. Зависимость элементов от времени в долгопериодических колебаниях в ограниченной задаче трех тел // Космич. Исслед. 1968. Т. 6. № 4. С. 536