СЕДОВ-100

КАВИТАЦИОННЫЙ КЛАСТЕР ПАРОВЫХ МИКРОПУЗЫРЬКОВ как НАНО-ТЕРМОЯДЕРНАЯ БОМБА

Р.И. Нигматулин Российская академия наук Институт океанологии им. П.П. Ширшова

nigmar@ocean.ru

Конференция по механике сплошной среды, посвященная 100-летию академика Л.И. Седова

12-13 ноября 2007 г.

Multibubble & Single Buble SONOLUMINESCENCE

MBSL

SBSL

0.82 MeV 2.45 MeV 50°0 Нейтрон Гелий Дейтерий Дейтерий Тритий Протон 50% ┿ 1.01 MeV 3.02 MeV

СИНТЕЗ ЯДЕР ДЕТЕРИЯ

THE START

 R. Nigmatulin, R. Lahey (Jr) «Perspective of Bubble Fusion» Nuclear Reactor Thermohydrolics (NURETH-7), Invited Plenary Lecture, Saratoga-Springs, New-York, USA, 1995)

2. R. Nigmatulin, «Gas Dynamics of Sonoluminescence» NATO ASI on Sonochemistry and Sonofusion (Invited Lecture, Seattle, Washington, USA, 1997);

THE TEAM

- Oak Ridge National Laboratory, TN, USA Purdue University, W. Lafayette, IN, USA R.P. Taleyarkhan, C.D. West, J.S. Cho, Y. Xu
- Rensselaer Polytechnic Institute, Troy, NY, USA R. T. Lahey (Jr), R.C. Block
- Российская академия наук, Россия Р.И. Нигматулин, И.Ш. Ахатов, Р.Х. Болотнова, Н.К. Вахитова, А.С. Топольников

КУМУЛЯТИВНОЕ СХОЖДЕНИЕ СФЕРИЧЕСКОЙ УДАРНОЙ ВОЛНЫ («микроводородная бомба»)

Инициирование сферической ударной волны на сходящейся межфазной границе

Автомодельная кумуляция сферической и цилиндрической ударной волны из бесконечности

- Guderley, 1942;
- Ландау и Станюкович, 1955;
- Нигматулин, 1967 (детонационноая волна)
- Хабиров С.В. 2007

Фокусировка сферической волны в центре пузырька

Сферическая волна после отражения от центра пузырька

КАК УСИЛИТЬ СВЕРХСЖАТИЕ ?

• УСИЛИТЬ АКУСТИЧЕСКУЮ ВОЛНУ ($\Delta p_1 \sim 15-20$ bar)

- ГАЗ В ПУЗЫРЬКЕ: КОНДЕНСИРУЮЩИЙСЯ ПАР (ПАРОВАЯ КАВИТАЦИЯ)
 - Минимизировать торможение жидкости
 - Достичь большей кинетической энергии жидкости

• ХОЛОДНАЯ ЖИДКОСТЬ

– Более интенсивная конденсация

• ЖИДКОСТЬ С ТЯЖЕЛЫМИ МОЛЕКУЛАМИ (ОРГАНИКА)

- Низкая скорость звука в паре ($c_g = \sqrt{\frac{YR}{T}} T$, где μ молекулярный вес)
- Большие значения коэффициента конденсации (аккомодации)

(α ≅ 1, вместо α ≅ 0. 04 для воды)

- Высокая кавитационная прочность жидкости

• КЛАСТЕР ПУЗЫРЬКОВ

Кинетическая энергия сходящейся жидкости вокруг пузырька

 $\boldsymbol{K} \approx \Delta p R_{\max}^3$

Наш эксперимент	Однопузырьковая сонолюминесценция	
$\Delta p \sim 15$ bar	$\Delta p \sim 1.5$ bar	
$R_{\rm max} \sim 500 \ \mu { m m}$	$R_{\rm max} \sim 50 \ \mu { m m}$	
Более слабое торможение сходящейся жидкости из-за конденсации пара	Macca газа в пузырьке = = const	
Кинетическая энергия $oldsymbol{K}$ в 10 ⁵ раз больше, чем з однопузырьковой сонолюминесценции		
ШАНС: Т	_{nax} ~ 10 ⁸ K	

НО: Обеспечить сферичность схлопывающегося пузырька!!!

Фотографии осциллирующих пузырьков

ПОСЛЕДОВАТЕЛЬНОСТЬ СОБЫТИЙ

Производство трития

PEER REVIEWED PAPERS

- Taleyarkhan, R., West, C., Cho, J.S., Lahey (Jr.) R., Nigmatulin, R., Block, R., Evidence for Nuclear Emissions during Acoustic Cavitation, Science, Vol. 295, pp. 1868-1873, 8 March 2002.
- Taleyarkhan, R., West, C., Cho, J.S., Lahey (Jr.) R.T., Nigmatulin, R., Block, R., Additional Evidence of Nuclear Emissions during Acoustic Cavitation, Physical Review E, Vol. 69, p.0361091, March, 2004.
- Nigmatulin, R., Akhatov, I., Topolnikov, A., Bolotnova, R., Vakhitova, N, Lahey, (Jr.) R., Taleyarkhan R. The Theory of Supercompression of Vapor Bubbles and Nano-Scale Thermonuclear Fusion, *Physics of Fluids*, Vol. 17, 107106, 1-31, 2005.
- Nigmatulin, R. I., Nano-Scale Thermonuclear Fusion in Imploding Vapor Bubbles, Nuclear Engineering and Design, 235, 2005, 1079-1091.
- Taleyarkhan, R., Block, R., Lahey (Jr.) R., R. I. Nigmatulin, and Y. Xu, Nuclear <u>Emissions During Self-Nucleated Cavitation</u>, *Physics Review Letters*, 96, 034301, 2006.
- Taleyarkhan, R., West, C., Lahey (Jr.) R.T., Nigmatulin, R.I., Block, R., Y. Xu, Reply on Naranjo Comment, Physical Review Letters, Vol. 97, LQK1005, 2006.
- R. Taleyarkhan, R., West, C., Lahey (Jr.) R.T., Nigmatulin, R.I., Block, R., Y. Xu, Reply on Lipson Comment, *Physical Review Letters*, Vol. 97, LQK1028, 2006.
- and 10 other papers

CLUSTER of Microbubbles: Formation and Evolution

Comet like streamers Duration ~ 50 ms No strong Shocks on the Glass Wall

Y. Xu & A. Butt, Confirmatory experiments for nuclear emissions during acoustic cavitation, Nuclear Engineering and Design, 2005

Первое приближение для описания пузырьков в кластере

r' - Лагранжева координата для двухфазного континуума в кластере

r – Эйлерова радиальная микро-координата для пробного пузырька *x*(r, t) – Эйлерова радиальная координата для двухфазного континуума

$$\frac{\partial x}{\partial t} = v \qquad \frac{\partial v}{\partial t} = \frac{1}{\rho_0} \left(\frac{x}{r'}\right)^2 \frac{\partial p}{\partial r'}$$

$$(1 - \phi_1) a \frac{\partial w_{La}}{\partial t} + \frac{3w_{La}^2}{2} = \frac{p_{La} - p}{\rho_{L0}}$$

$$p_{La} = p_G(a) - \frac{2\sigma}{a} - \frac{4\mu_L w_{La}}{a}$$

$$\rho_0 = \rho(1 - \alpha_G), \quad \phi_1 = 4.5 \alpha_G$$

$$\alpha_G = \frac{\alpha_{G0} a^3}{(1 - \alpha_{G0}) a_0^3 + \alpha_{G0} a^3}$$

Р.И. Нигматулин **"Динамика многфазных сред"**, Москва, Наука, 1987 R. Nigmatulin, et al. **The Theory of Supercompression of Vapor Bubbles and Nano-Scale Thermonuclear Fusion**, **Physics of Fluids**, Vol. 17, 107106, 1-31, **2005**.

Усиление волны сжатия в кластере

Второе приближение для пробного пузырька

Жидкость

$$e = \varepsilon + \frac{u^2}{2}$$
, $p = p(\rho, T)$, $\varepsilon = \varepsilon(\rho, T)$, $\lambda_g = \lambda_{g0} \left(\frac{T_g}{T_{g0}}\right)^n$

Ударная адиабата и изотермы (P-V) для D-Ацетона (C₃D₆O)

Ударная адиабата и

Жидкость, газ, двухфазное состояние, плазма

изотермы жидкости p, bar 1010 p, Mbar 108 0.08 108 K NDis 10⁶ 0.4 -00 $10^7 \,\mathrm{K}$ 0.04 Dis Dis 106 K 6000K . 0- $10^5 \,\mathrm{K}$ 0.3 -0.8 1.0 0.4 0.6 p(p) - 5000 K Dis 104 K Dis NDIS 4000K 273 K- 10^{2} Shock adiabat 0.2 sotherms Critical 10³ K 3000 K Trunin, 1992 2-phase Saturation line 508 K 2000K 100 NDis 0 0.1 p, bar NDis (1000 K «Холодное» p(p) NDis -2000 давление p(p) 0 -4000 0.4 0.6 0.8 1.0 Γ Pr/P Коэффициент 2 Грюнайзена Liquid Dis $\rho_0 D = \rho (D - U)$ 0.667 NDis Gas 0.125 0 1 1 1 1111 1 1 1 1 1 1 1 1 1 $p - p_0 = \rho_0 D U$ P_{L0}/P 10^{-1} 100 10^{1} 10^{2}

• Nigmatulin, R., et al The Theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion, *Physics of Fluids*, Vol. 17, 107106, 1-31, 2005.

ДИССОЦИАЦИЯ

1.
$$C_3 D_6 O = 3D_2 + O_2 + 3C + Q_{mol}$$

 $Q_{mol} = 3.48 \times 10^6 \text{ J/kg},$ Molecular Weight = 64

2.
$$D_2 = D + D + Q_D$$
, $Q_D = 111.0 \times 10^6 \text{ J/kg}$
3. $O_2 = O + O + Q_O$, $Q_O = 15.6 \times 10^6 \text{ J/kg}$

$$C_{3}D_{6}O = 6D + O + 3C + Q_{dis}$$

$$Q_{dis} = Q_{mol} + \frac{12}{64}Q_{D} + \frac{16}{64}Q_{O} = 28.2 \times 10^{6} \text{ J/kg}$$

 $\gamma_G = 1.125$ (vapor) $\rightarrow \gamma = 1.667$ (mono-atomic gas)

HOHU3AIIIVI ДИССОЦИИРОВАННОГО ГАЗА

$$\varepsilon_{d}^{(ch)} = \varepsilon_{d0}^{(ch)} + \varepsilon_{i}^{(ch)}$$
 ($\varepsilon_{i}^{(ch)}$ -ionization energy)
 $\varepsilon_{i}^{(ch)} = \sum_{k} v_{k} x_{k} R_{k} T_{k} = \frac{36}{64} R_{C} \sum_{j=1}^{6} x_{Cj} T_{Cj} + \frac{12}{64} R_{D} x_{D1} T_{D1} + \frac{16}{64} R_{O} \sum_{j=1}^{8} x_{oj} T_{Oj}$
 $C_{3} D_{6} O: M = 64$ -molecular weight
 $M_{C} = 12 \times 3 = 36$ ($v_{C} = \frac{36}{64}$) - carbon,
 $M_{D} = 2 \times 6 = 12$ ($v_{D} = \frac{12}{64}$) - deuterium,
 $M_{O} = 16 \times 1 = 16$ ($v_{C} = \frac{16}{64}$) - oxygen.
 $T_{k} = 11 - 800 \text{ eV}$
 $k = d, 0; C1, C2, C3, C4, C5, C6; D1; O1, O2, O3, O4, O5, O6, O7, O8.$

 $Q_{ion} = 7.66 \times 10^9 \text{ J/kg}$

КИНЕТИКА ТЕРМОЯДЕРНОГО СИНТЕЗА

 $\langle \sigma v
angle$ - averaged product of the cross section times the deuterons thermal velocity (reactivity)

РАЗЛИЧНЫЕ СТАДИИ РАСШИРЕНИЯ И СЖАТИЯ ПУЗЫРЬКА

- Режим с малым числом Maxa (M << 1) ⇒ ур-е Рэлея + ур-е теплопроводности
- Режим с умеренным и большим числом Maxa (M ~ 1, and M >> 1) ⇒ Газодинамический код

Пространственные распределения для субпикосекундной термоядерной стадии

THERMO-NUCLEAR CORE

Рис.2. Зависимость амплитуды максимальных искажений на фазе сжатия пузырька (не обязательно в момент коллапса, см. рис.3) от номера гармоники *i* в случае $R^{\circ}/R_m = 1$. В случае $q = \overline{\rho}_G / \rho_{L0}$, $\mathbf{v}_L = 0$ (зеленая линия) используемая модель испарения-

конденсации, возможно, дает не вполне правильное представление об уровнях искажений при *i* > 1500 (см. рис.5)

ПАРАДОКСЫ

```
• Эффект ХОЛОДНОЙ жидкости

    КОЛЛЕКТИВНЫЙ эффект КЛАСТЕРА пузырьков

    НЕДИССОЦИАЦИЯ жидкости

• "ХОЛОДНЫЕ" электроны

    ЗАОСТРЕНИЕ:

Размер разностной сетки для термоядерного ядра
∆r ~ 0.1 нм << a ~ 10 нм << a ~ 10 000 нм = 10 мкм

    УСТОЙЧИВОСТЬ СФЕРИЧЕСКОЙ ФОРМЫ
```

RESULTS OF ANALYSIS

В	ubble Fusion (Ufa Branch of RAS +ORNL+RPI)	Sonoluminescence (Livermore)
	Density: 10-20 g/cm ³	Density: 10 g/cm ³
	Temperature: 10 ⁸ K = 10 KeV	Temperature: 10 ⁶ K
	Pressure: 10 ¹¹ bar = 10 ² Gbar	Pressure: 3×10 ⁸ bar
	Velocity: 1000 km/s	v_{elocity} : 10 km $\rightarrow 1$ year
Dura	tion: $10^{-13} - 10^{-12}$ s = $10^{-1} - 1$ ps	$t(M \sim 1) \sim 300 \text{ ns} \rightarrow 2 \text{ days}$ Duration: 10 ps $t(D1s, Ion) \sim 2 \text{ ns} \rightarrow 20 \text{ min}$
Raun	us of the mermonuclear core. Too him	$\frac{\text{Redius of the T}_{Fusion}}{\text{Fusion}} = \frac{1}{520} \text{ ps}^{\circ} \text{ K} \frac{\text{cor}}{\text{ps}} \text{ Cor} \text{ Fusion}^{\circ} \text{ Fusion}^{\circ$
Num	ber of lons in the Thermonuclear Core: 2 × 10 ⁹	Number of lons in the Core: 2 × 10 ⁵
Pro	oduction of the Fast Neutrons and Tritium nucleus 10 ⁵ - 10 ⁶ s ⁻¹	

ПУЗЫРЬКОВЫЙ НАНО-ТЕРМОЯД

Получено не «термоядерное горение, а только термоядерные «искры»

Из искры пузырькового нано-термояда возгорится ТЕРМОЯДЕРНОЕ ПУЛЬСИРУЮЩЕЕ ПЛАМЯ».