О ВОЗМОЖНОСТИ ВЫПОЛНЕНИЯ ЦИКЛИЧЕСКИ ПОВТОРЯЮЩИХСЯ ГРАВИТАЦИОННЫХ МАНЕВРОВ НА ОСНОВЕ ИСПОЛЬЗОВАНИЯ ТРОСОВЫХ СИСТЕМ

И.М. Сидоров

Январь 2002

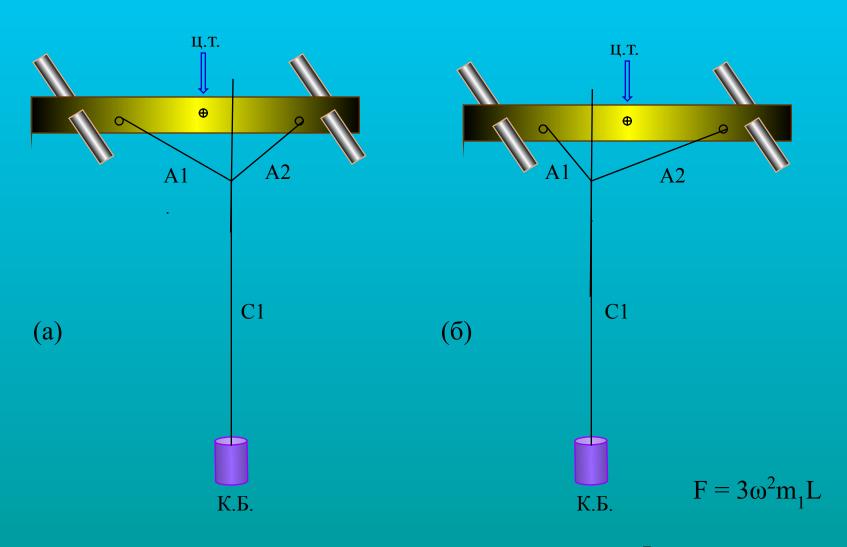
Рассматривается динамика движения на околоземной орбите тросовой системы, которая называется пращей. Праща - это два блока со съемными контейнерами, связанные длинным тросом. Система вращается, относительно центра масс, в плоскости орбиты. На концевых блоках должны быть установлены электродвигатели, с помощью которых можно подтягивать или отпускать трос.

Рассмотрена принципиальная возможность решения следующих задач:

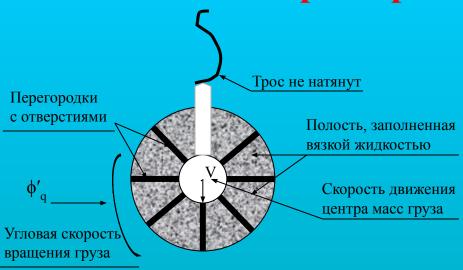
- 1. Прямое преобразование энергии, аккумулированной на борту космического объекта, а именно тросовой системы, в механическую энергию движения по орбите. Это позволяет изменять орбиту космического объекта, не используя реактивного способа движения. В качестве источника энергии предлагается использовать электрический аккумулятор или двигатель, с помощью которого получается электрическая энергия на борту космического аппарата. Эта же схема позволяет реализовать и обратный процесс, т.е. преобразование механической энергии движения объекта в электрическую энергию.
- 2. Способ передачи механической энергии с одного космического объекта на другой.
- 3. Возможность использования механической энергии движения естественных небесных тел, в частности Луны. При выполнении космическим объектом гравитационного маневра вблизи Луны механическая энергия объекта может увеличиться. Эту прибавку можно преобразовать в электрическую энергию на борту КА или использовать для изменения параметров орбиты КА.

Этапы решения комплексной проблемы

Автоматическая установка строительных конструкций с помощью управляемой платформы Разработка алгоритмов управления свободно летающей модели в окрестности орбитальной космической станции

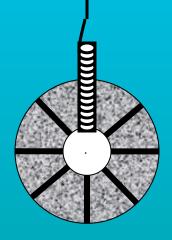

Разработка новых систем управления посадкой подводного спасательного аппарата на комингс-площадку затонувшей подводной лодки

Предложения по созданию высокоточной трехосной гравитационной стабилизации КА на основе использования тросовых систем

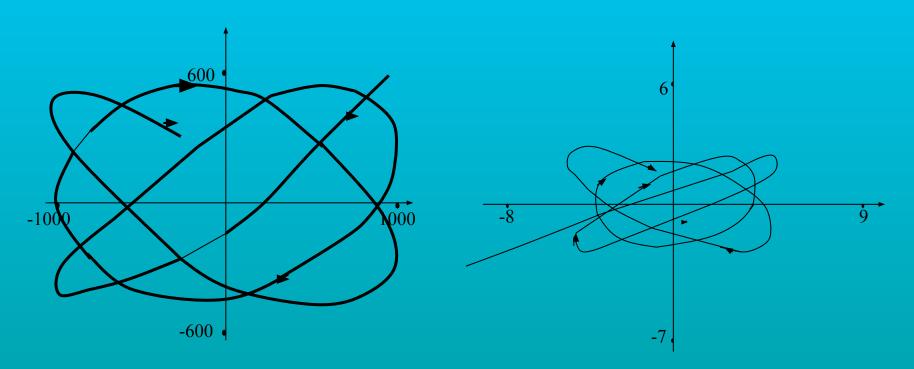

О применении тросовых систем для реализации транспортных потоков в космическом пространстве путем обмена грузов в пунктах контакта

О возможности выполнения циклически повторяющихся гравитационных маневров с использованием торосовых систем

Принципиальная схема управления угловой ориентацией КА с помощью тросовой системы

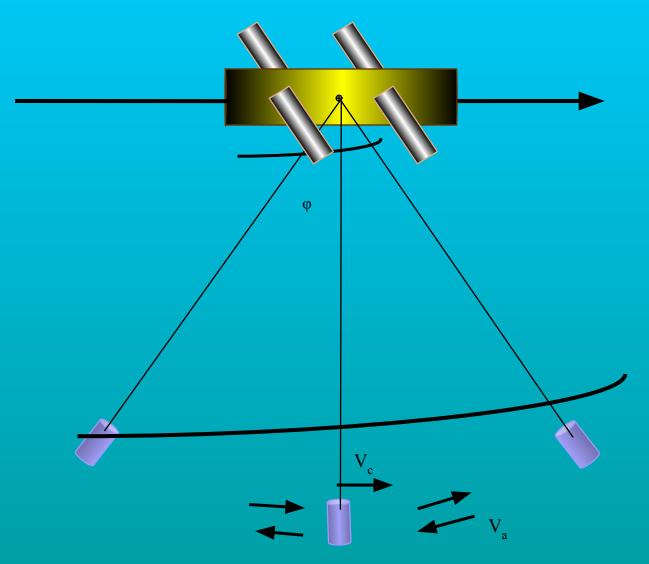

Схема развертывания троса

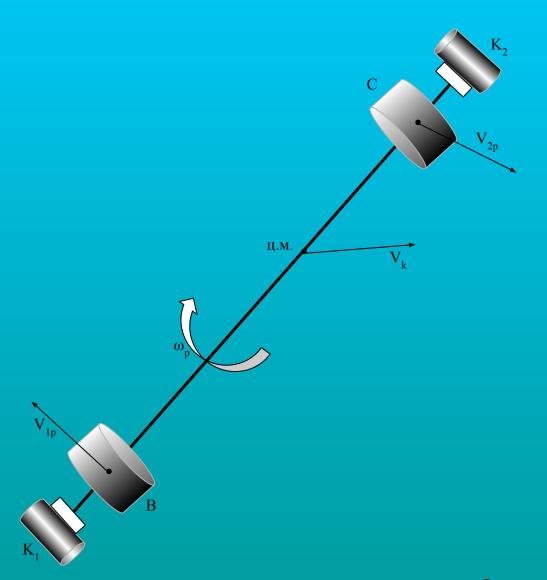
1. Груз в момент отталкивания от объекта



2. Схема груза в процессе натяжения троса

3. Установившееся положение груза после завершения развертывания троса


Перемещение груза и его точки подвеса


Траектория движения груза в процессе колебания

Траектория перемещения точки подвеса в процессе управления

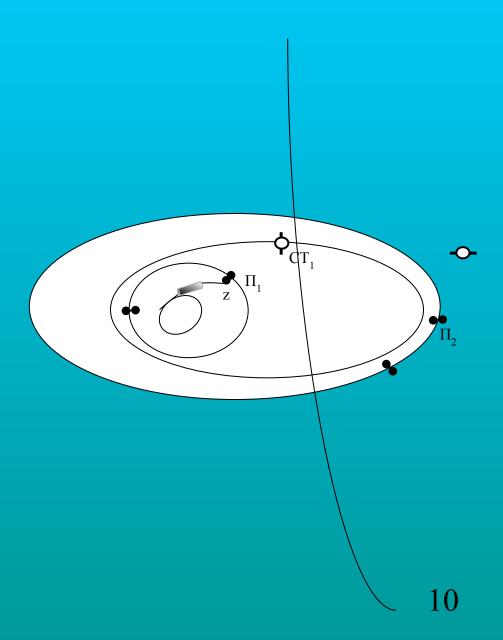

Маятниковая система

Схема движения пращи

Схема вывода груза на геостационарную орбиту

Основные уравнения

Уравнения движения пращи

$$m_{j} x''_{j} = -m_{j} \mu_{1} x_{j} / R^{3}_{j} + v_{j} \bar{F}(dL) (x_{2} - x_{1}) / L_{u}$$

$$m_{j} y''_{j} = -m_{j} \mu_{1} y_{j} / R^{3}_{j} + v_{j} F(dL) (y_{2} - y_{1}) / L_{u} j = 1,2$$
(1)

 x_j, y_j - координаты двух тел; $v_j = 1$, если j = 1, $v_j = -1$, если j = 2; R — радиус Земли, $\mu_1 = 398606$ км $^3/c^2$; m_j — масса концевых блоков;

$$R_j = \sqrt{x_j^2 + y_j^2}, L_u = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2};$$

Натяжение троса: $F(dL) = dL E_m S_h/L_0$;

 E_m — модуль упругости материала троса; S_h — площадь сечения троса; dL — удлинение троса; $dL = L_u$ — L_0 — длина троса в ненатянутом состоянии.

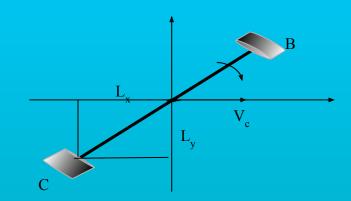
Полная механическая энергия - Q_{s}

$$Q_s = Q_1 + Q_2 + Q_p$$

$$Q_1 = m_1(\mu_1/R - \mu_1/R_1 + v_1^2/2); \ Q_2 = m_2(\mu_1/R - \mu_1/R_2 + v_2^2/2);$$
 (2)

$$Q_p = E_m S_h(L_0 \ln(L_u/2) - L_u)/m_1;$$
 $v_j^2 = x_j'^2 + y_j'^2, j = 1,2$

 $B(2)\ Q_1,\ Q_2$ определяют механическую энергию концевых блоков пращи. Q_p — энергия продольных колебаний растяжимого троса.


Основные уравнения (продолжение)

Координаты движения центра масс пращи

$$x_c = (k_m x_2 + x_1)/(1 + k_m), y_c = (k_m y_2 + y_1)/(1 + k_m); k_m = m_2/m_1$$

Текущая высота центра масс пращи при орбитальном движении

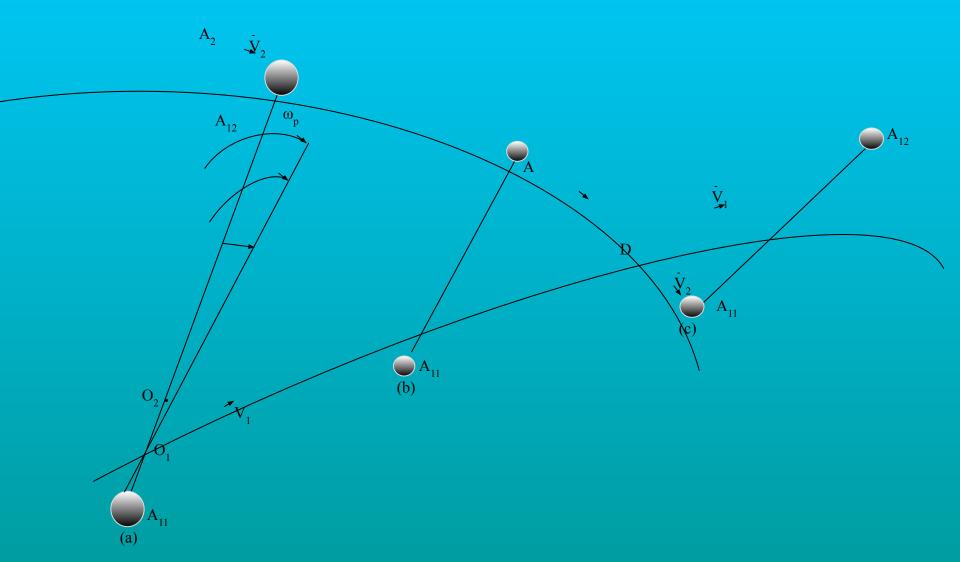
$$H = \sqrt{x_c^2 + y_c^2 - R}$$
.

Если электродвигатель на одном или сразу двух концевых блоках начинает подтягивать или отпускать трос на интервале времени (0 < t < T), то его длина $L_0(t)$ в свободном состоянии

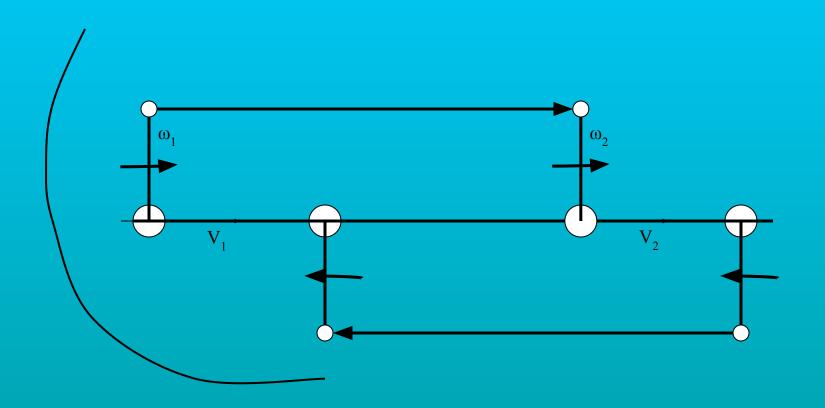
$$L_{\theta}(t) = L_{\theta} - l(t)$$

Для реализации этой операции требуется затрата энергии

$$\Delta_{1}^{T}Q = \int dl(t)/dt \ F(t)dt \tag{3}$$


Законы управления длиной троса

A	$\mathbf{L}_0 = \mathbf{L}_0 + \mathbf{t} \Delta \mathbf{l}$
В	$L_0 = L_0 + l_0 f_{\omega}(t); \qquad f_{\omega}(t) = L_x L_y / L_u^2$
АиВ	$\mathbf{L}_0 = \mathbf{L}_0 + \mathbf{t} \Delta \mathbf{l} + \mathbf{l}_0 \mathbf{f}_{\omega}(\mathbf{t})$
С	$L_0 = L_0 + l_{\Delta} f_{\omega}(L) + h_p H f_{\omega}(t)$


Таблица

Начальные данные			Вариации параметров движения		
Вариант	Скорость вращения	Фаза возбуждения	Скорость вращения	Высота орбиты	Энергия аккумулятора
B_1	по часовой стрелке v _{1p} > 0	l ₀ > 0	v _{1p} — уменьшается	H – увеличивается	Δ Q _в – увеличивается
B_2	v _{1p} >0	l ₀ <0	v _{1p} — увеличивается	H – уменьшается	Δ Q _В - уменьшается
B_3	Против ча- совой стре- лки v _{ip} < 0	l ₀ > 0	v _{1p} — увеличивается	Н – увеличивается	Δ Q _В - уменьшается
$\mathrm{B_4}$	v _{1p} < 0	l ₀ < 0	v _{1p} — уменьшается	Н – уменьшается	Δ Q _в – увеличивается

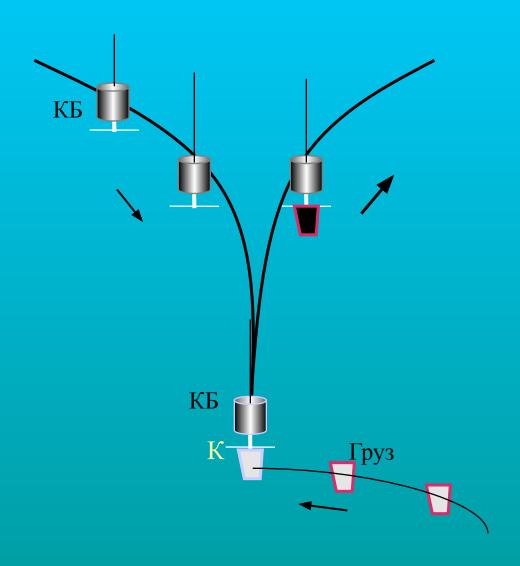

Схема контакта блока А2 с пращей А


Схема передачи импульса скорости

Динамика стыковки груза с концевым блоком (КБ)

Первый перелет блока G

Орбита станции:

$$H_s = 400 \text{ km}; V_{kr} = 7673 \text{ m/c}$$

Орбита пращи:

$$H_a = 3200 \text{ KM}$$
 $H_b = 700 \text{ KM}$
 $V_a = 5806 \text{ M/c}$

$$V_{\rm a}^{\rm P} = 5806 \, \text{m/c}$$

$$V_{\rm m} = 8104 \text{ m/c}$$

Вес пращи 50 т; вес блока $G_1 = 10$ т

Перелетная орбита G₁:

$$H_a^{(G)} = 550 \text{ km}$$

$$H_{\Pi}^{a}(G) = 390 \text{ км}$$

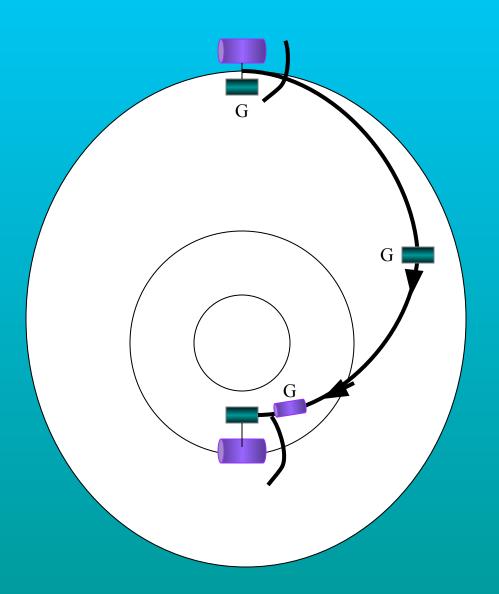
$$Q^{(I)}_{II} = 90000$$
 квтч $V_{II}^{(G)} = 7544$ м/с $V_{II}^{(G)} = 7723$ м/с

$$V^{(G)} = 7544 \text{ m/c}$$

$$V_{II}^{"(G)} = 7723 \text{ m/c}$$

Скорость вращения пращи станции

$$V_{ks} = V_{II} - V_{II}^{(G)} = 50 \text{ m/c}$$


Скорость вращения пращи П

$$V^{(1)}_{KII} = V_{II} - V_{a}^{(G)} = 560 \text{ m/c}$$

После контакта параметры орбиты пращи:

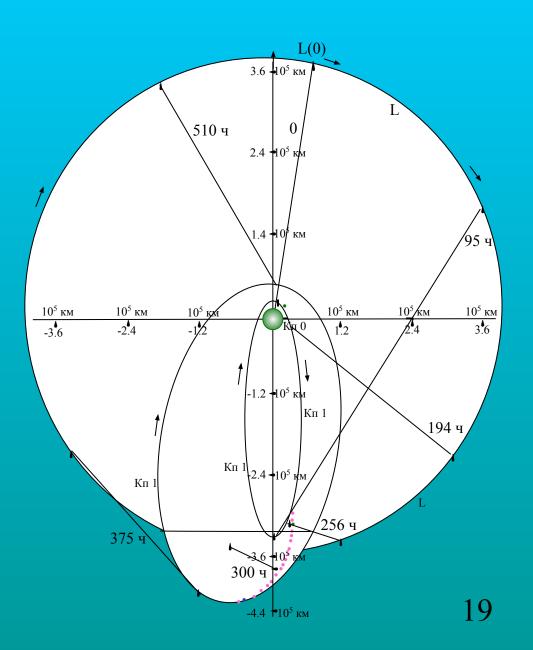
$$H^{(1)}_{II} = 675 \text{ km}; \ V^{(1)}_{II} - V^{(1)}_{KII} / 6 = 8011 \text{ m/c}$$
 $H^{(1)}_{a} = 2865 \text{ km}; \ V^{(1)}_{17} = 6111 \text{ m/c}$

Второй перелет блока G

Перелетная орбита:

$$H_s = 2855 \text{ км};$$
 $H_p = 300 \text{ км};$
 $Q_{11}^{(2)} = 101000 \text{ квтч};$
 $V_a = 6021 \text{ m/c};$
 $V_{II} = 8328 \text{ m/c}$

Скорость вращения пращи П


$$V_{KII}^{(2)} = V_{a}^{(1)} - V_{a}^{(2)} = 90 \text{ m/c}$$

Скорость вращения пращи на станции

$$V_{\rm II}$$
 - $V_{\rm k}$ = 655 м/с $\Delta Q = Q^{(2)}_{21}$ - $Q^{(1)}_{11}$ = 110000 квтч;

Эволюция орбиты пращи:

Пример гравитационного маневра пращи А3

Показано, что применение тросовых систем открывает возможность использования практически бесконечного источника энергии, а именно, механической энергии движения планет Солнечной системы.