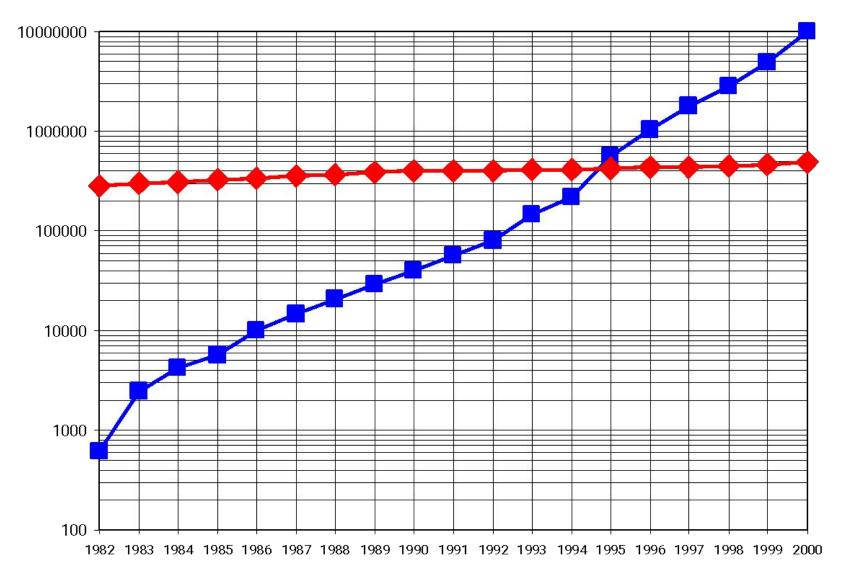
Учебно-Научный Центр


Биоинформатика, или молекулярная биология in silico

М.Гельфанд Семинар в ИППИ 7 апреля 2006

Пропаганда 1

красный: статьи

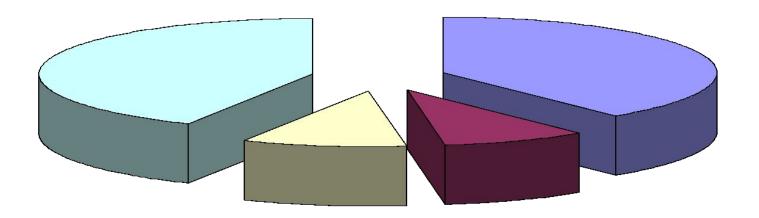
синий: последовательности

Анализ индивидуальных генов

- Поиск родственных белков в банках последовательностей перенос функции от гомологов
- Функциональные сайты (каталитические центры)
- Функциональные участки (трансмембранные сегменты, сигнальные пептиды и т.п.)

• Анализ на уровне индивидуальных генов даёт возможность охарактеризовать 50-75% генов в новом геноме

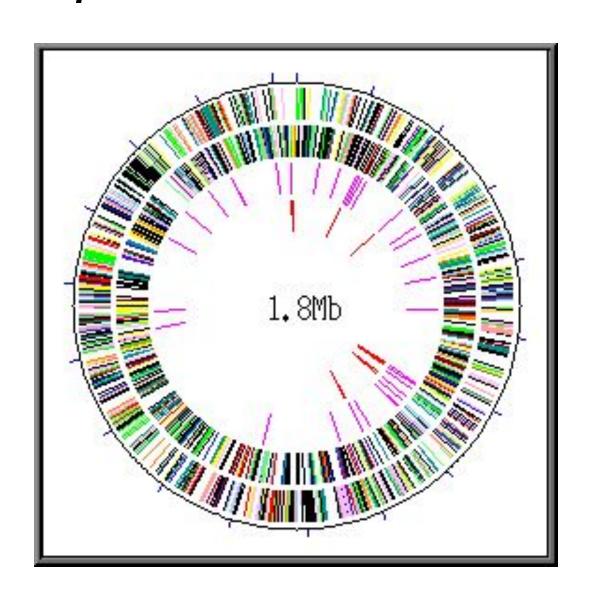
Ho:


- ~100 универсально отсутствующих генов (нет ни одного известного гена для известной функции)
- множество функций, для которых неизвестны представители в больших таксонах
- в каждом геноме ~5-10% консервативных генов с неизвестной функцией
- трудно предсказывать специфичность в мультигенных семействах (транспортёры, факторы транскрипции)
- нельзя найти что-то принципиально новое

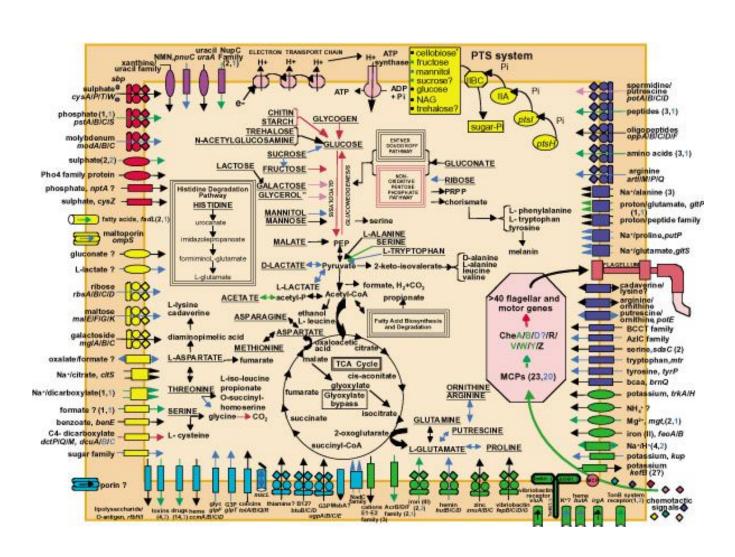
How much do we know about the Escherichia coli proteome?

Characterized experimentally

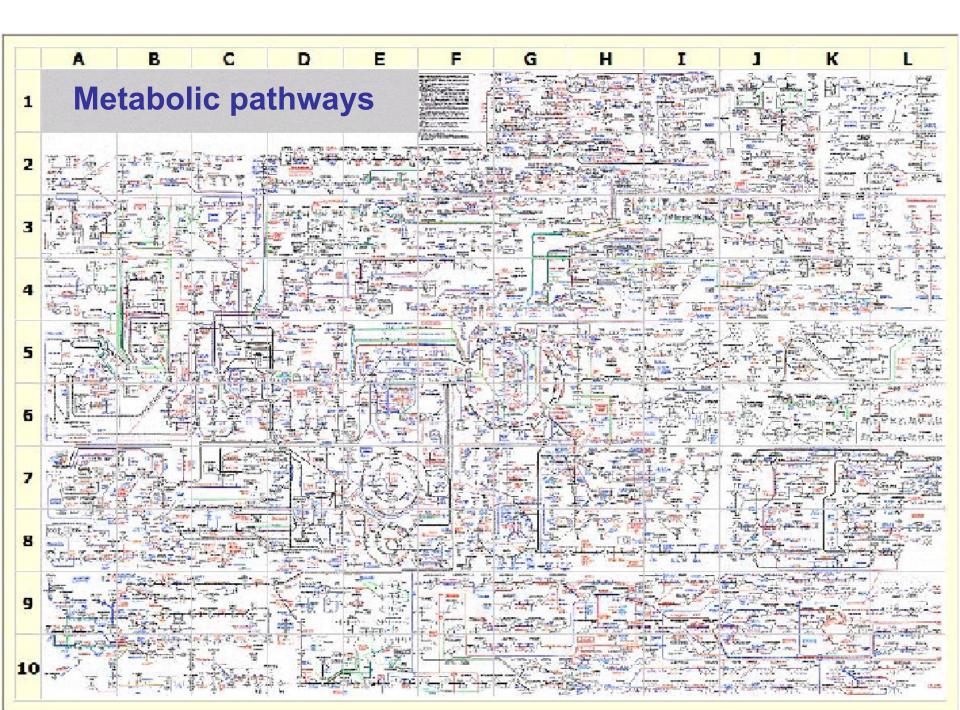
Function inferred by similarity only



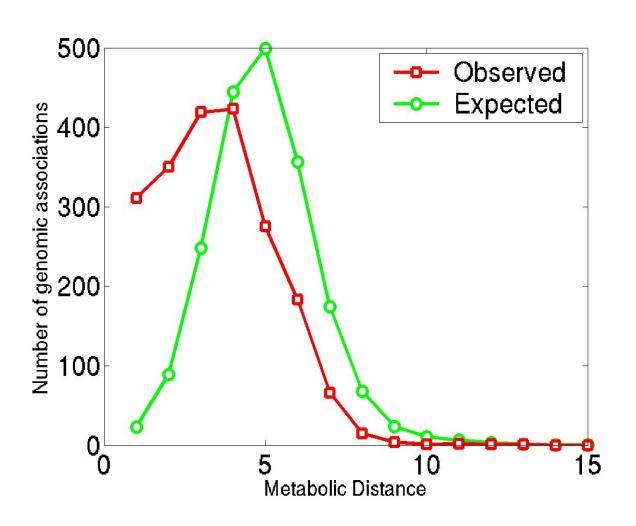
"Hypothetical"


"Conserved hypothetical"

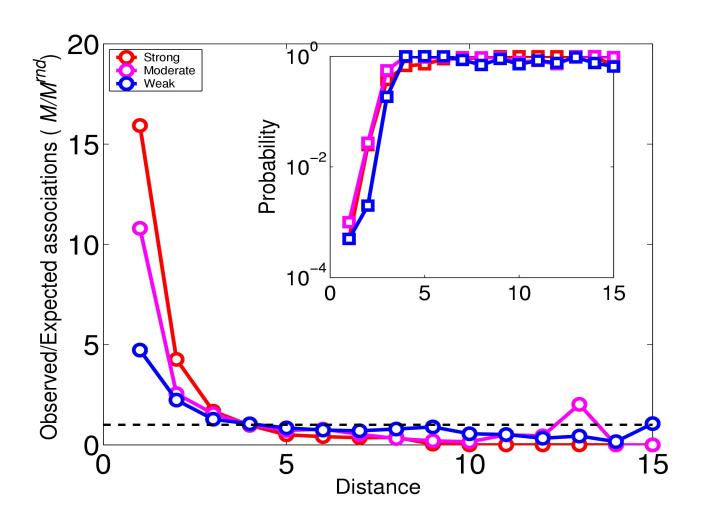
Haemophilus influenzae, 1995

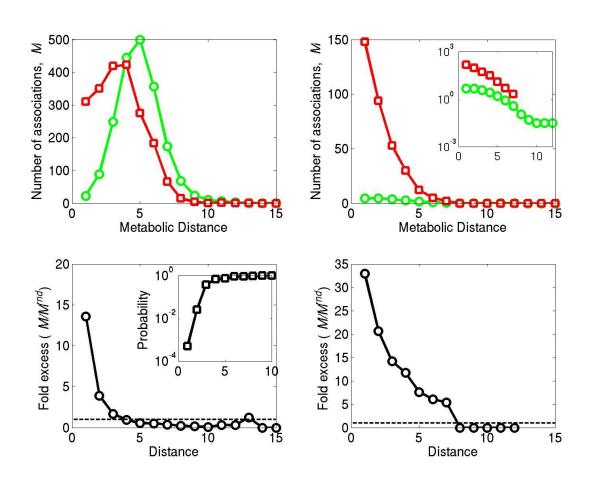


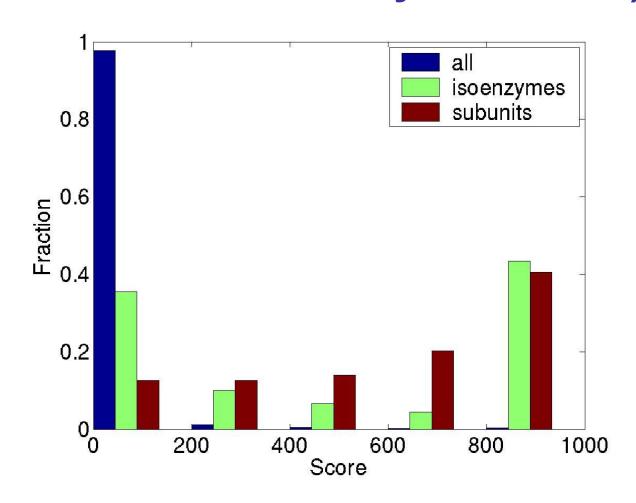
Vibrio cholerae, 2000



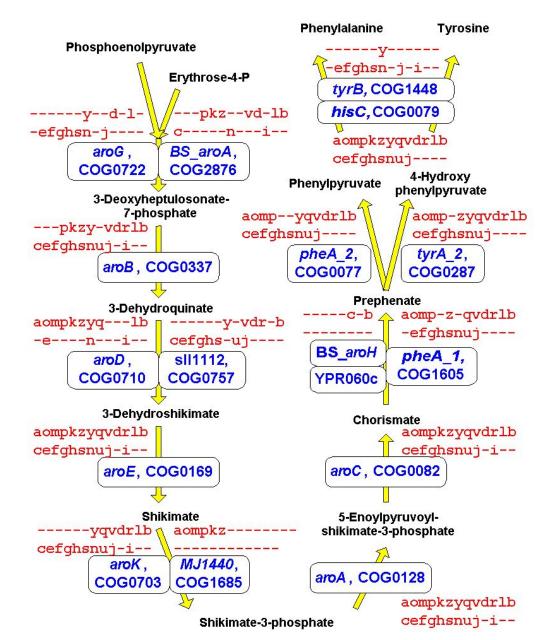
Сравнительно-геномные подходы


- Positional clustering
- Phylogenetic profiling
- Gene fusions


Functionally dependent genes tend to cluster on chromosomes in many different organisms


More genomes (stronger links) => highly significant clustering

... особенно в линейных путях (справа)



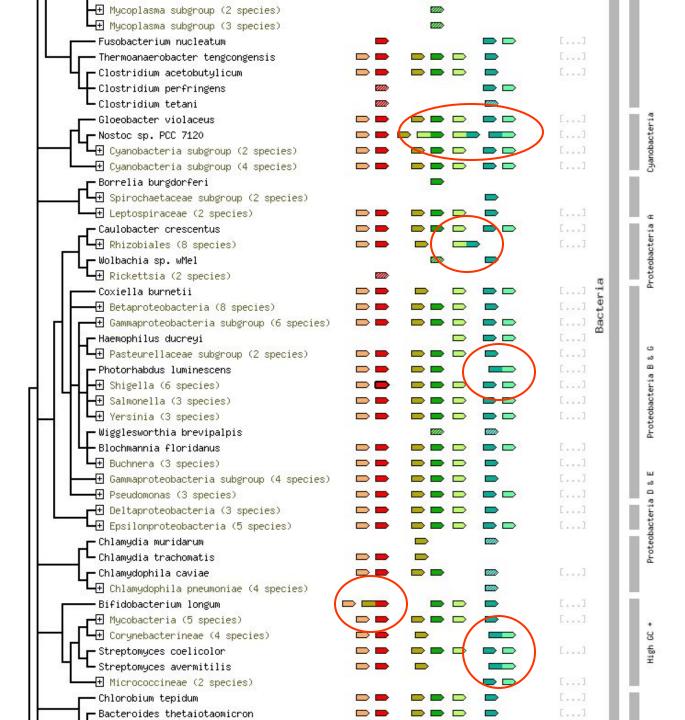
Распределение уровней связи (бимодальное для изоферментов, монотонное для субъединиц)

Phyletic profiles in the Phe/Tyr pathway

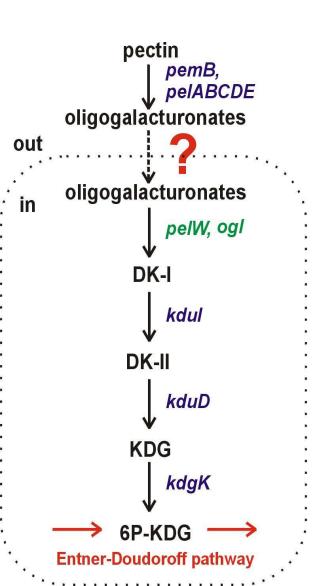
Arithmetics of phyletic patterns


```
3-dehydroquinate dehydratase (EC 4.2.1.10):
Class I (AroD) COG0710 aompkzyq---lb-e---n--i--
Class II (AroQ) COG0757 ----y-vdr-bcefghs-uj----
Two forms combined aompkzyqvdrlbcefqhsnuj-i--
Shikimate dehydrogenase (EC 1.1.1.25):
        COG0169 aompkzyqvdrlbcefqhsnuj-i--
AroE
Shikimate kinase (EC 2.7.1.71):
Typical (AroK) COG0703 -----yqvdrlbcefghsnuj-i--
Archaeal-type COG1685 aompkz------
Two forms combined aompkzyqvdrlbcefghsnuj-i--
```

```
5-enolpyruvylshikimate 3-phosphate synthase (EC 2.5.1.19)
```

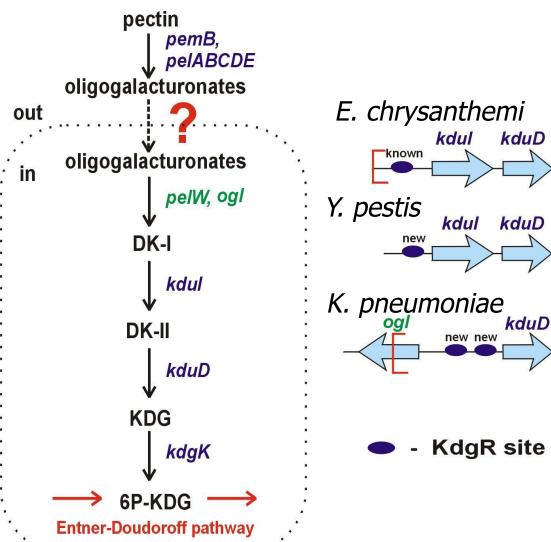

AroA COG0128 aompkzyqvdrlbcefghsnuj-i--

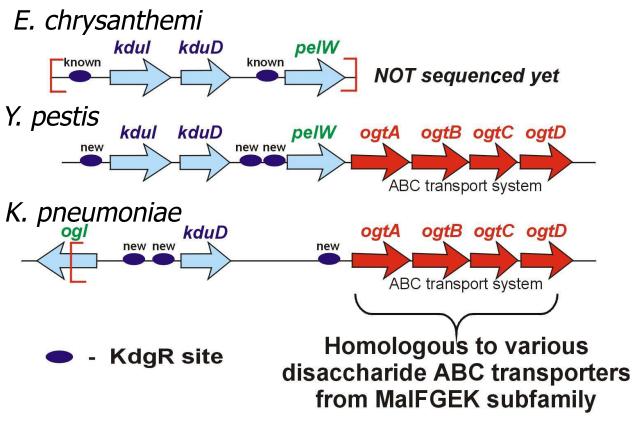
Chorismate synthase (EC 2.5.1.19)


AroC

COG0082 aompkzyqvdrlbcefghsnuj-i--

STRING: *trpB* – fusions

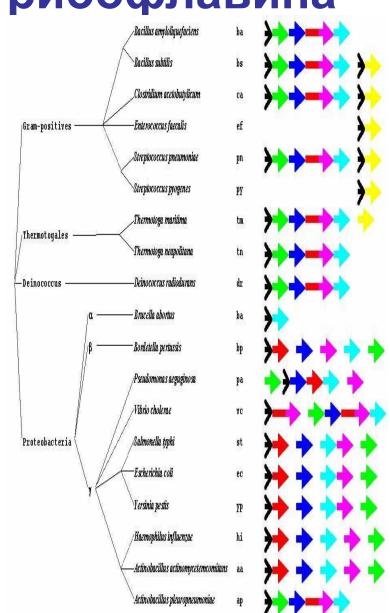


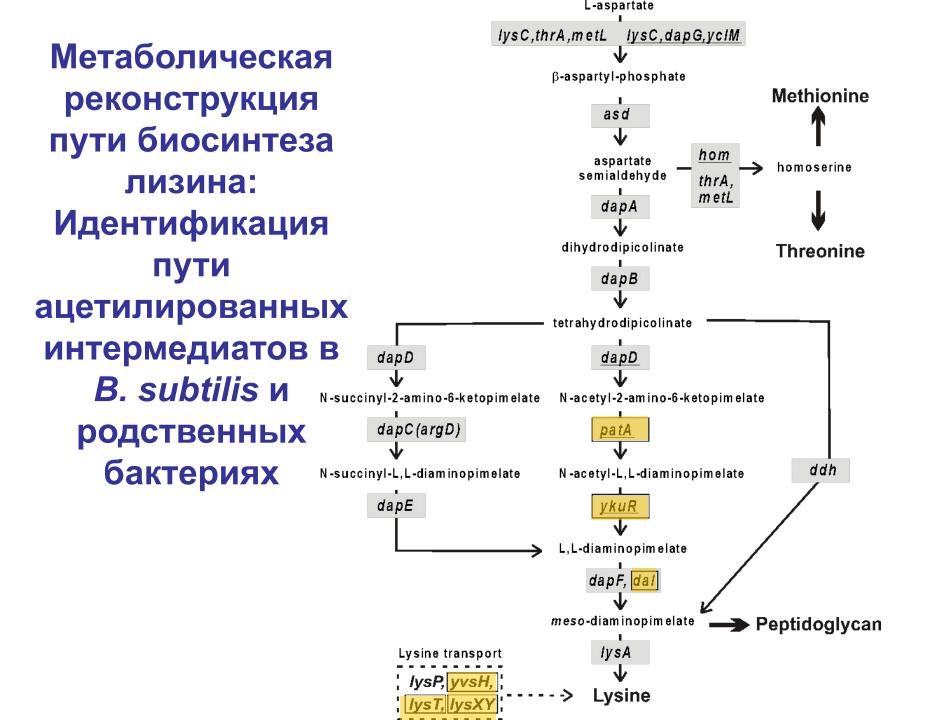

Утилизация пектина

E. chrysanthemi

... и транспорт олигогалактуронатов

ҮраА: транспортёр рибофлавина

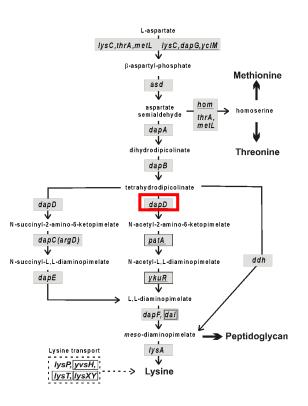

- 5 предсказанных ТМ-сегментов => потенциальный транспортёр
- регуляторный RFN-элемент => корегуляция с генами метаболизма рибофлавина => транспорт рибофлавина или предшественника
- S. pyogenes, E. faecalis, Listeria: есть ypaA, нет генов биосинтеза рибофлавина => транспорт рибофлавина


Предсказание:

YpaA – рибофлавиновый транспортёр (Gelfand et al., 1999)

Проверка:

- ҮраА переносит рибофлавин (генетический анализ, Кренева и др., 2000)
- ураА регулируется рибофлавином



Идентификация пути ацетилированных интермедиатов - 0

dapD (yquQ):

• ортолог известного гена *E.* coli

tetrahy drodipicolinate dap N-acetyl-2-amino-6-ketopimelate patA N-acetyl-L,L-diaminopimelate vkuR L,L-diaminopimelate dapF, dal meso-diam inopim elate

Идентификация пути ацетилированных интермедиатов - 1

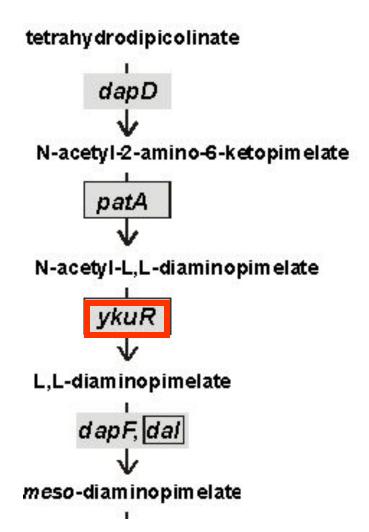
patA:

- пиридоксаль-фосфатзависимая аминотрансфераза (по гомологии)
- ко-локализуется и корегулируется с генами биосинтеза лизина во многих грам-положительных бактериях

tetrahy drodipicolinate

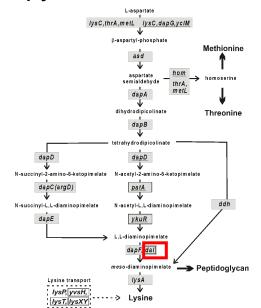
dapD

patA


N-acetyl-2-amino-6-ketopimelate

N-acetyl-L,L-diaminopimelate

Идентификация пути ацетилированных интермедиатов - 2

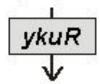

ykuR:

- N-ацил-L-аминокислота амидогидролаза (по гомологии)
- ко-локализуется и ко-регулируется с геном биосинтеза лизина dapD во многих грам-положительных бактериях
- в некоторых случаях принадлежит к большому лизиновому оперону, регулируемому LYS-элементом

dapX:

- dapF отсутствует у некоторых бактерий (Staphylococcus aureus, Oenococcus oeni, Leuconostoc mesenteroides)
- во всех этих геномах есть dapX, гомологичный аланиновой рацемазе и другим эпимеразам
- в S. aureus dapX принадлежит к большому лизиновому оперону
- в O. oeni оперон dapX-asd регулируется LYS-элементом

Идентификация пути ацетилированных интермедиатов - 3


tetrahy drodipicolinate

N-acetyl-2-amino-6-ketopimelate

N-acetyl-L,L-diaminopimelate

L,L-diaminopimelate

meso-diam inopim elate

Сравнительная геномика систем утилизации цинка Две роли цинка в бактериях:

• Структурная в ДНК-полимеразах, праймазах, рибосомных белках

 Каталитическая в протеазах и других белках

Регуляторы и сигналы

GATATGTTATAACATATC

GAAATGTTATANTATAACATTTC

Escherichia coli

Rhodobacter capsulatis Rhodobacter sphaeroides

Agrobacterium tumefaciens

Sinorhizobium meliloti. Brucella melitensis

Mesorhizobium loti

GTAATGTAATAACATTAC

Enterococcus faecalis

Staphylococcus aureus ·

Bacillus anthracis-

Bacillus halodurans

Bacillus subtilis Listeria innocua Listeria monocytogenes

Salmonella typhi Klebsiella pneumoniae

Yersinia pestis Vibrio choleare

Lactococcus lactis

Streptococcus pyogenes
Streptococcus pneumoniae Streptococcus mutans

TTAACYRGTTAA

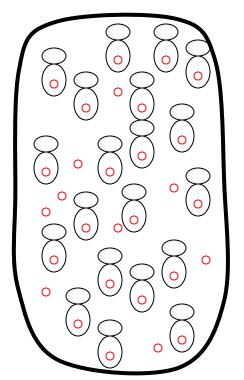
TAAATCGTAATNATTACGATTTA

Цинк и паралоги белков рибосом

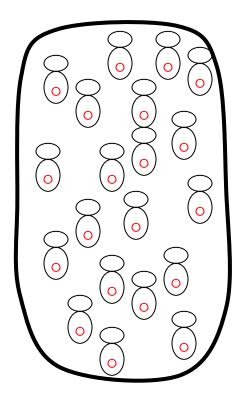
	L36	L33	L31	S14
E. coli, S.typhi	_	_	-+	_
K. pneumoniae	_	_		_
Y. pestis,V. cholerae	- ×	_	-+	_
B subtilis	_	-+-	-+	-+
S. aureus	_		_	- +
<i>Listeria</i> spp.	—		_	- +
E. faecalis	–	- ×	_	_+_
S. pne., S. mutans	_		_	_

(в скобках – мотив «цинковая лента»)

	L36	L33	L31	S14
E. coli, S.typhi	(-)	_	(-) +	_
K. pneumoniae	(–)	_	(-) -	_
Y. pestis,V. cholerae	(-) ×	_	(-) +	_
B subtilis	(–)	(-) + -	(-) +	(-) +
S. aureus	(-)	(-)	 	(-) +
<i>Listeria</i> spp.	(–)	(-) -	_	(-) +
E. faecalis	(–)	(-) ×	 	(-) +
S. pne., S. mutans	(-)	(-)	_	(-)

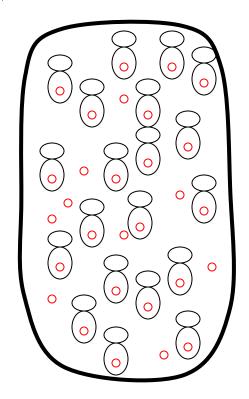


Сводка наблюдений:

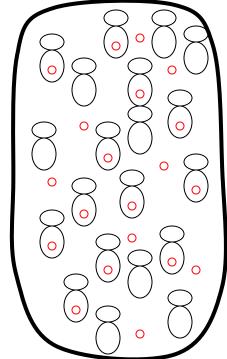

- Makarova-Ponomarev-Koonin, 2001:
 - L36, L33, L31, S14 это единственные рибосомные белки, дуплицированные более, чем в одном геноме
 - L36, L33, L31, S14 четыре из семи рибосомных белков, содержащих мотив цинковой ленты (четыре цистеина)
 - Из двух (или более) копий L36, L33, L31, S1, обычно одна содержит мотив цинковой ленты, а другая – нет
- Среди генов, кодирующих паралоги рибосомных белков, как правило одни регулируется цинковым репрессором, а соответствующий белок никогда не имеет мотива цинковой ленты

Плохой сценарий

достаточно цинка



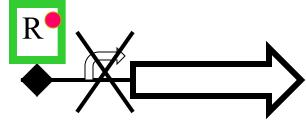
недостаточно цинка: весь цинк потреблен рибосомами, ферменты голодают



Хороший сценарий

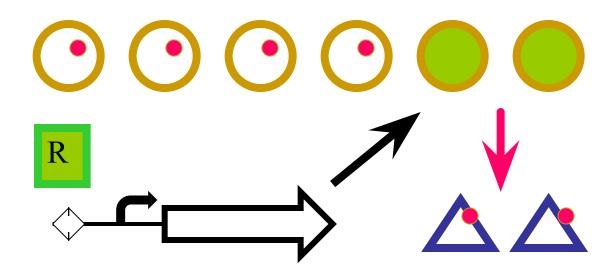
достаточно цинка

недостаточно цинка: часть рибосом включает белки, не содержащие цинка — остается для ферментов Я


Регуляторный механизм

Sufficient Zn

ribosomes


repressor

Zn-dependent enzymes

Zn starvation

Предсказание ...

(Proc Natl Acad Sci U S A. 2003 Aug 19:100(17):9912-7.)

Comparative genomics of bacterial zinc regulons:

Enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins

Ekaterina M. Panina*†, Andrey A. Mironov*‡, and Mikhail S. Gelfand*‡§

... и подтверждения

Zinc is a key factor in controlling alternation of two types of L31 protein in the *Bacillus subtilis* ribosome

Hideaki Nanamiya,^{1†} Genki Akanuma,^{1†}
Yousuke Natori,¹ Rikinori Murayama,¹ Saori Kosono,²
Toshiaki Kudo,² Kazuo Kobayashi,³
Naotake Ogasawara,³ Seung-Moon Park,⁴ Kozo Ochi⁴
and Fujio Kawamura^{1*}

(Mol Microbiol. 2004 Apr;52(1):273-83.)

Journal of Bacteriology, April 2006, p. 2715-2720, Vol. 188, No. 7 0021-9193/06/\$08.00+0 doi:10.1128/JB.188.7.2715-2720.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved.

Liberation of Zinc-Containing L31 (RpmE) from Ribosomes by Its Paralogous Gene Product, YtiA, in *Bacillus subtilis*

Genki Akanuma, Hideaki Nanamiya, Yousuke Natori, Naofumi Nomura, and Fujio Kawamura*

Регуляторная система «с нуля под ключ»

• Консервативный сигнал перед генами рибонуклеотид-редуктаз

Потенциальный регулятор (через филогенетический паттерн +

домены)

1	2	3	4	5
α-proteobacteria	FAC ALAT I.G.	±	none in Wolbacia, Rickettsia spp.	
β-proteobacteria	CACTALAT TOTAL	+	all	
γ-proteobacteria	COTATAT TIGE	±	none in Buchnera, Wigglesworthia	topA in Pseudomonas spp.; dnaA in Shewanella spp.
δ-proteobacteria	CACLALAT T.GTQ.	±	none in <i>Desulfovibrio</i> spp.	dnaA in Myxococcus xarthus. Desulfotalea psychrophila; parA in Desulfuromonas spp.
s-proteobacteria	n/a	12	none	
Cyanobacteria	C.C. TeGret	±	none in Nostoc sp.	
Bacteroidetes/Chlorobi	n/a	-	none	
Bacillus/Clostridium	· A-ACAATATATTGT	±	none in Leuconostoc mesenteroides. Oenococcus oeni	dgk-pnuC in lactobacilli; nucA in Lactococcus lactis; prdD-prdC in Bacillus spp.; ligA in Clostridium acetobutylicum
Mycoplasmatales	n/a	122	none	
Actinobacteria	CAC A AT T GTG.	+	all	
Spirochaetes	n/a	±	only in Treponema denticola	
Thermus/Deinococcus	CACC TEGIA	+	all	
Thermotogales	· ACAATATATTÇA	+	all	
Chlamydiales	Te CIAIATATe Geat	+	all	
Other	n/a	±	in Pirellula sp., Chloroflexus aurantiacus, Fusobacterium nucleaticum, none in Aquifex aeolicus	

Реутилизация дезоксирибонуклеотидов

PruC-like

transporter

Другие члены регулона

• Репликация (ДНК-лигазы, топоизомеразы, ДНК-полимеразы

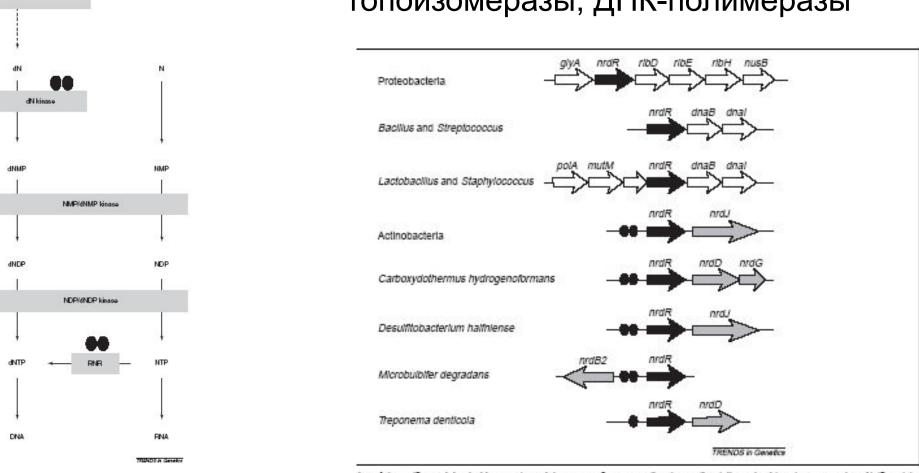
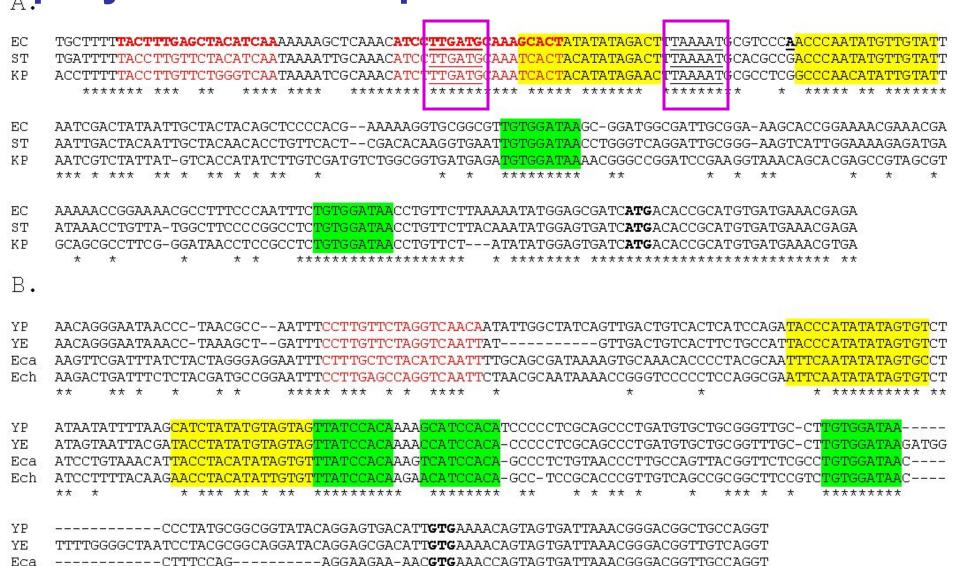



Figure 84. Two attentive pathways of the decoyrbonucleotides synthesis which are predicted to be regulated by NMR in Cham-positive labolacistic dNN (decoyrbonice), dNPNDP (decoyrbonice) dnnophosphate, dnnophosphate, dNPNDP (decoyrbonice) dnnophosphate, dNPNDP (decoyrbonice) dnnophosphate, dNPNDP (decoyrbonice) dnnophosphate, dnnophosphat

tion of the nxtR-containing loci in some bacterial genomes. Genes encoding the predicted ribonucleotide reductes e regulator NxtR and the reponents are shown in black and grey, respectively. The black circles indicate the predicted NxtR-sites. The direction of transcription is indicated

Как регулируется: репрессия в результате кооперативного связывания

------ATCAACAAAGGAAGAACACCGAGGAACAC---**ATG**AAACCAGTAGTGATTAAACGGGACGGATGTCAGGT

Ech

Что осталось за кадром

- Эукариоты
- Структуры
- Молекулярная эволюция
 - Гены
 - Геномы
 - Метаболические и регуляторные системы
- Другие виды данных и что с ними делать
 - Экспрессия
 - Белок-ДНКовые взаимодействия
 - Белок-белковые взаимодействия
 - Структура хроматина (метилирование, гистоны и их модификации и т.д.)
- «Системная биология»