Машинное обучение: начало

ИГОРЬ КУРАЛЁНОК

К.Ф.-М.Н., ЯНДЕКС/СПБГУ

Знакомство: Куралёнок Игорь

30-ка Компиляторы

ПМ-ПУ СПбГУ Оценка текстового поиска

Sun Microsystems Полнотекстовый поиск

JetBrains Машинное обучение

Яндекс Обработка сигналов

Руководитель группы модернизации поиска. Яндекс.

+7(921)9031911

Что почитать?

- Википедия (лучше en)
- T. Hastie, R. Tibshirani, J. Friedman "The elements of Statistical Learning"
- T. Mitchell "Machine Learning"
- Труды конференций: ICML, KDD, NIPS, CIKM,...
- Журналы: JMLR, JML, JIS, NC
- Видео курс: www.ml-class.org

Какие у нас цели?

- Уметь сформулировать задачу в терминах ML
- Найти подходящий класс решающих алгоритмов по формулировке
- Ориентироваться в области и знать «где посмотреть» существующие решения
- Понимать границы применимости

Что нужно, чтобы понять?

- ТВ и МС
- Линейная алгебра
- Язык программирования

Как отчитываться?

- К концу обучения сделать 15 минутную презентацию по применению ML в вашей любимой задаче.
- Задачки на Octave
- Ошибки к лекциях и в слайдам:)

Машинное обучение: определения

Tom M. Mitchell: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Webster: machine learning - The ability of a machine to improve its performance based on previous results.

Ru. Wikipedia: Машинное обучение — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться.

Немного истории

- 50-60 базы знаний, полнотекстовый поиск, распознавание образов, нейронные сети
- 70-е символьный вывод, Quinlan ID3 деревья, разумные практические результаты, VC-оценки
- 80-е первые конференции, много практического применения, активное применение кластеризации в анализе
- 90-е повторное семплирование в ML, SVM, применение в IR, ML != DM, LASSO, bagging, boosting, CF валидация
- oo-e Compressed sensing, развитие ансамблей,...

Основные понятия

- Область работы
- Опыт = Data Set = DS
- Целевая функция = Target
- Решающая функция

Какое бывает обучение

Делить можно по:

- способу генерации DS;
- виду целевой функции;
- классу решающих функций;

Деление по способу формирования DS/U

- Transductive
- Обычное
- Активное
 - о Стохастическая оптимизация
 - о Бюджетное
 - о Бандиты
- Необычное
 - Online learning
 - Reinforcement learning

Transductive learning

- 1. Фиксируем множество примеров
- 2. Фиксируем рабочее множество
- 3. Обучаемся на всех/доступных примерах

$$F_0 = \underset{F(X,Y)}{\operatorname{argmax}}(T(Y|F))$$

Обычное обучение

- 1. Фиксируем множество примеров
- 2. Определяем генеральную совокупность
- 3. Обучаемся на доступных примерах

$$F_0 = \underset{F(X)}{\operatorname{argmax}} (\mu_{\xi \sim U(\Gamma)} (T(\xi|F)))$$

Активное обучение

- 1. Фиксируем множество примеров
- 2. Определяем генеральную совокупность
- 3. Обучаемся на доступных примерах
- 4. Пополняем множество примеров по просьбе алгоритма и переходим к п. 3

$$F_i = \underset{F(X_i = X_{i-1} \cup x_i, x_i \in \Gamma \setminus X_{i-1})}{\operatorname{argmax}} (\mu_{\xi \sim U(\Gamma)} (T(\xi|F)))$$

Активное обучение

- 1. Стохастическая оптимизация: $x_i \sim U(\Gamma)$
- 2. Бюджетное

$$w: \Gamma \to \mathbb{R}$$
$$\sum_{i} w(x_i) < B$$

з. Бандиты

$$\Gamma = \cup_i \chi_i$$
$$x_i \sim \chi_{n(i)}$$

Деление по целевой функции

• С учителем

- о Классификация
- Аппроксимация (экстраполяция)
- Metric learning
- о Последовательности

• Без учителя

- о Кластеризация
- о Уменьшение размерности
- Representation Learning

Смешанные

- о Кластеризация с условиями
- о Все те же, что и с учителем
- Transfer learning

Обучение с учителем

$$\Gamma = \{ \gamma_i | \gamma_i = (x_i, y_i), x_i \in \mathbb{X} \ y_i \in \mathbb{Y} \}$$

• Классификация

$$\mathbb{Y} = \{-1, 1\}$$

$$\mathbb{Y} = \{1, \dots, n\}$$

$$\mathbb{Y} = \{0, 1, \dots, n\}$$

- lacktriangle Аппроксимация (экстраполяция) $\mathbb{Y} = \mathbb{R}$
- Metric learning = Классификация
- Последовательности

$$\mathbb{Y} = \{(b_i, e_i) | b_i < e_i, e_i, b_i \in \mathbb{N}\}$$

$$\mathbb{X} = 2^A$$

Другое обучение

• Без учителя

- о Кластеризация
- о Уменьшение размерности
- Representation Learning

Смешанные

- Кластеризация с условиями
- о Все те же, что и с учителем
- Transfer learning

Деление по решающей функции

- Линейные решения
- Графы
- Нейронные сети (ANN)
- Параметрические семейства функций
- Instance based learning
- Предикаты
- Ансамбли

Деление по решающей функции (1)

• Линейные решения

- о Линейная регрессия, логистическая регрессия
- о Скрытый дискриминантный анализ (LDA/QDA*)
- LASSO
- o SVM
- o LSI*

Деление по решающей функции (2)

• Графы

- о Деревья решений
- о Байесовы сети
- Conditional Random Fields

Нейронные сети (ANN)

- о Персептронные сети
- о Сети Хопфилда
- о Машины Больцмана
- Сети Кохоннена

Деление по решающей функции (3)

- Параметрические семейства функций
 - о Сэмплирование
 - о Генетические алгоритмы
 - PLSI/LDA/прочие модели с распределениями (им нет числа)
- Instance based learning
 - o kNN

Деление по решающей функции (4)

• Предикаты

- о Логические выражения
- о Регулярки/NFA/DFA

• Ансамбли

- о Просто ансамбли
- Bagging
- Boosting
- o BagBoo/BooBag

Машинное Обучение: Начало

ОТСЕБЯТЕНА

Дедуктивные/индуктивные методы

Индуктивные	Дедуктивные
Полагаются на статистику	Полагаются на prior knowledge
Используют классы элементарных функций	Решающая функция следует из предполагаемой структуры
Работают в любой области	Привязаны к данным
Знание области отражается на составление target	Понимание области меняет решающую функцию
Логистическая регрессия	LDA
Для вхождения в область, при больших размерностях	Небольшие размерности, «давно тут сидим»

Data Mining vs. Machine Learning

Data Mining	Machine Learning
Выявление «скрытых данных»	Оптимизация целевой функции
Больше про данные	Больше про методы
«Мы применили такой метод и получили клевые результаты на таких стандартных данных»	«Предложили новый метод, который работает круче чем другие на нескольких датасетах (возможно даже синтетика)»
SIGIR, WSDM, WWWC,	ICML, CIKM,

Artificial Intelligence vs. Machine Learning

Artificial Intelligence	Machine Learning
Устройство умных машин	Оптимизация целевой функции
Больше про мат. моделирование	Больше про методы
«Мы придумали как формализовать задачу игры в шахматы, применили такие методы и обыграли человека»	«Предложили новый метод, который работает круче чем другие на нескольких датасетах (возможно даже синтетика)»
AAAI, IJCAI,	ICML, CIKM,

Применение ML

- Практически везде (дайте задачку, я попробую придумать применение)
- Есть два больших класса работ

	Академические	Практические
Цели	Существуют ситуации, когда работает хорошо	Обеспечивает измеряемое качество на множестве примеров
Искать	Красивые идеи, хорошую математику	Работающие вещи, много грязных приемов
Смотреть	Конференции	Соревнования