ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Федеральное государственное образовательное учреждение высшего профессионального образования

Сибирский федеральный университет Институт фундаментальной биологии и биотехнологии

Биохимия

Факультет физической культуры и спорта Направление «Физическая культура» УДК 577.1 ББК 28.072 3-26

Электронный учебно-методический комплекс по дисциплине «Биохимия» подготовлен в рамках реализации в 2007 г. программы развития ФГОУ ВПО «Сибирский федеральный университет» на 2007–2010 гг. по разделу «Модернизация образовательного процесса».

Рецензенты:

Красноярский краевой фонд науки;

Экспертная комиссия СФУ по подготовке учебно-методических комплексов дисциплин

Замай, Т. Н.

3-26 Биохимия. Презентационные материалы. Версия 1.0 [Электронный ресурс]: наглядное пособие / Т. Н. Замай. – Электрон. дан. (5 Мб). – Красноярск: ИПК СФУ, 2008. – (Биохимия: УМКД № 295-2007 / рук. творч. коллектива Т. Н. Замай). – 1 электрон. опт. диск (*DVD*). – Систем. требования: *Intel Pentium* (или аналогичный процессор других производителей) 1 ГГц; 512 Мб оперативной памяти; 5 Мб свободного дискового пространства; привод *DVD*; операционная система *Microsoft Windows* 2000 *SP* 4 / *XP SP* 2 / *Vista* (32 бит); *Microsoft PowerPoint* 2003 или выше.

ISBN 978-5-7638-1080-6 (комплекса)

ISBN 978-5-7638-0964-0 (пособия)

Номер гос. регистрации в ФГУП НТЦ «Информрегистр» 0320802381 от 22.11.2008 г. (комплекса)

Номер гос. регистрации в ФГУП НТЦ «Информрегистр» 0320802380 от 22.11.2008 г. (пособия)

Настоящее издание является частью электронного учебно-методического комплекса по дисциплине «Биохимия», включающего учебную программу, учебное пособие, методические указания по самостоятельной работе, методические указания по лабораторным работам, организационно-методические указания, а также контрольно-измерительные материалы «Биохимия. Банк тестовых заданий».

Представлена презентация (в виде слайдов) теоретического курса «Биохимия», охватывающая все темы данной дисциплины.

Предназначено для студентов направлений подготовки бакалавров 032100.62 «Физическая культура» и специалистов 032101.65 «Физическая культура и спорт» укрупненной группы 030000 «Гуманитарные науки».

© Сибирский федеральный университет, 2008

Рекомендовано к изданию Инновационно-методическим управлением СФУ

Разработка и оформление электронного образовательного ресурса: Центр технологий электронного обучения информационно-аналитического департамента СФУ; лаборатория по разработке мультимедийных электронных образовательных ресурсов при КрЦНИТ

Содержимое ресурса охраняется законом об авторском праве. Несанкционированное копирование и использование данного продукта запрещается. Встречающиеся названия программного обеспечения, изделий, устройств или систем могут являться зарегистрированными товарными знаками тех или иных фирм.

Подп. к использованию 10.09.2008

Объем 5 Мб

Красноярск: СФУ, 660041, Красноярск, пр. Свободный, 79

Оглавление

ЧАСТЬ 1. Статическая биохимия

ЧАСТЬ 2. Динамическая биохимия

ЧАСТЬ 3. Спортивная биохимия

БИОХИМИЯ

ЧАСТЬ 1

Статическая биохимия. Строение, свойства, биологическая роль углеводов и липидов

Оглавление

- 1.1. Строение, свойства, биологическая роль углеводов и липидов
- 1.2. Строение, свойства, биологическая роль белков
- 1.3. Строение, свойства, биологическая роль нуклеотидов
- 1.4. Витамины, ферменты
- 1.5. <u>Гормоны, биологическая роль, классификация, механизм</u> <u>действия</u>

Основные проблемы спортивной биохимии

- Механизмы преобразования энергии в организме человека при мышечной деятельности.
- Регуляция синтеза белка при мышечной нагрузке.
- Механизмы нервной и гормональной регуляции обмена веществ при мышечной деятельности.
- Закономерности биохимической адаптации к систематической мышечной деятельности.

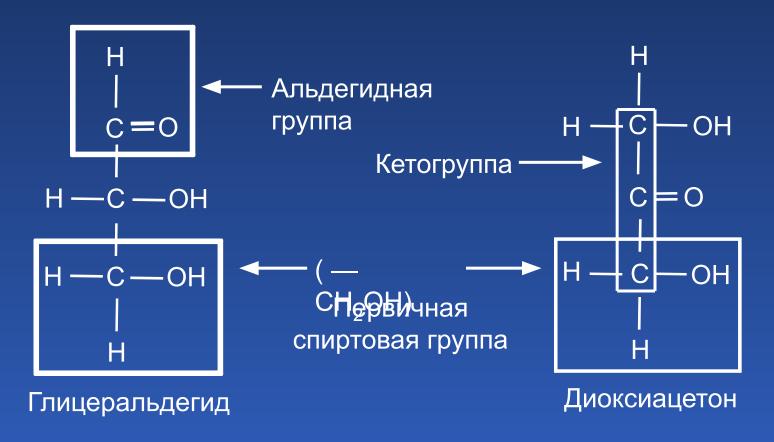
Важнейшие задачи спортивной биохимии:

- Выявление и оценка биохимических факторов, лимитирующих уровень спортивных достижений;
- Изучение биохимических сдвигов у спортсменов в процессе тренировочных занятий;
- Изучение биохимических характеристик восстановительных процессов после соревновательных и тренировочных нагрузок;
- Установление биохимических критериев, оценивающих эффективность тренировочного процесса, а также целесообразность применения специальных средств, направленных на повышение работоспособности и ускорение восстановительных процессов.

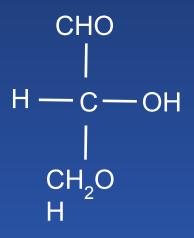
Взаимосвязь спортивной биохимии с другими науками

Превращение энергии в живых клетках

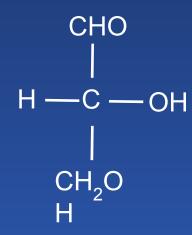
Первая важная аксиома молекулярной логики живого: живые организмы создают и поддерживают присущую им упорядоченность за счет внешней среды, степень упорядоченности которой в результате этого уменьшается.


Вторая аксиома молекулярной логики живого включает положение о том, что клетка — неравновесная открытая система, машина для извлечения из внешней среды свободной энергии, в результате чего происходит возрастание энтропии среды.

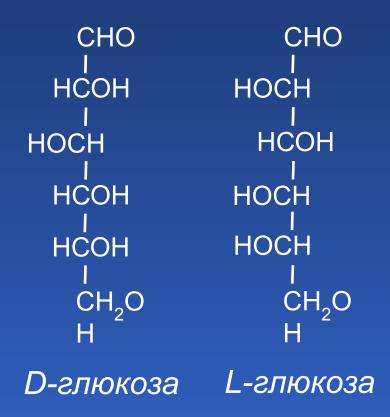
Третья важная аксиома: живая клетка является изотермической химической машиной.


Биологические функции углеводов

- Энергетическая функция (главный вид клеточного топлива).
- Структурная функция (обязательный компонент большинства внутриклеточных структур).
- Защитная функция (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета).


Моносахариды

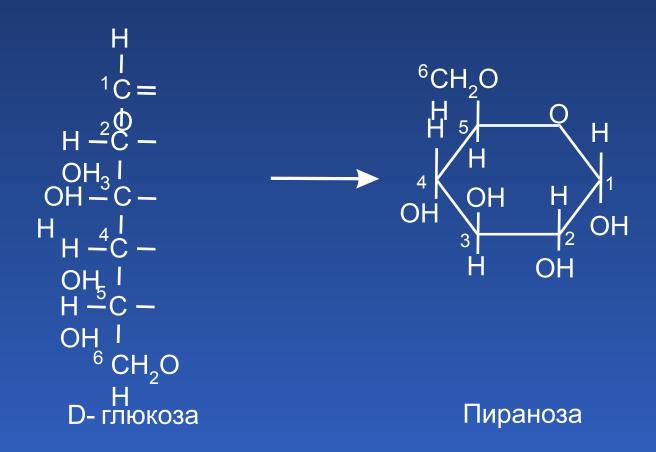
Моносахариды



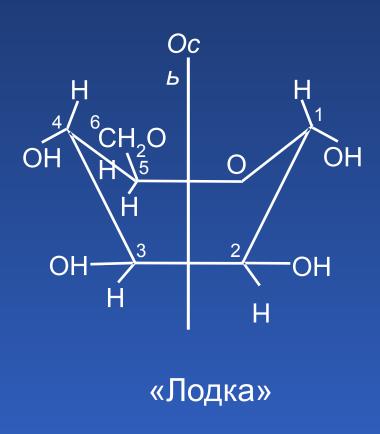
D(+)-глицеральдегид

L(-)-глицеральдегид

Энантиомеры

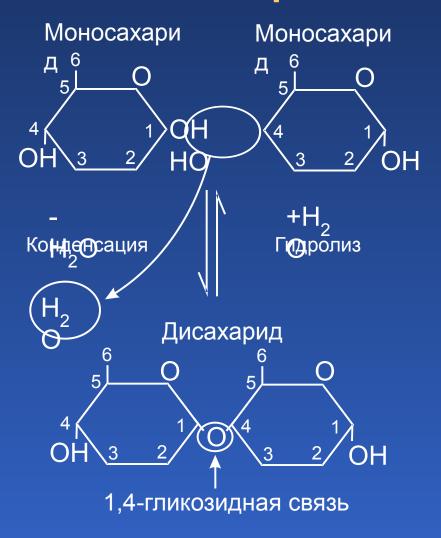


Представители моносахаридов


5-членные кольца сахаров – фуранозы

6-членные кольца сахаров – пиранозы

Пиранозные кольца могут принимать формы кресла и лодки

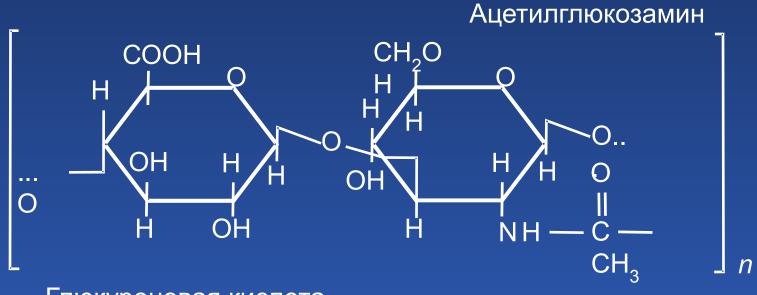

Олигосахариды

Глюкоза + Глюкоза = Мальтоза

Глюкоза + Галактоза = Лактоза

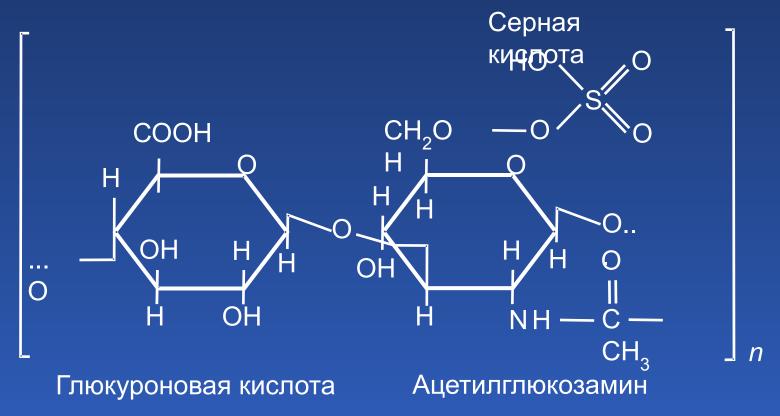
Глюкоза + Фруктоза = Сахароза

Олигосахариды


Олигосахариды

Сахароза

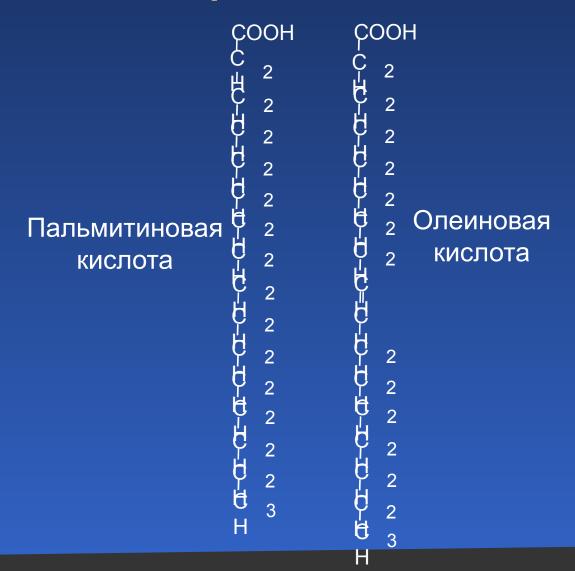
Полисахариды (гликаны)


Полисахариды (гликаны)

Мукополисахариды (гликозамингликаны)

Глюкуроновая кислота

Мукополисахариды (гликозамингликаны)


Кислота + Спирт — №ложный эфир + Вода
$$CH_3COOH + C_2H_5OH — C№_3COOC_2H_5 + H_2O$$
 Уксусная кислота Этиловый спирт Этилацетат

- СОО - это сложноэфирная связь.

Биологическая роль липидов

- Структурная функция (обязательные компоненты биологических мембран);
- Энергетическая функция (эффективный источник энергии в клетке);
- Служат формой, в которой транспортируется это топливо;
- Выполняют защитную функцию (в клеточных стенках бактерий, в листьях высших растений, в коже позвоночных);
- Некоторые вещества, относимые к липидам, обладают высокой биологической активностью это витамины и их предшественники, некоторые гормоны.

Жирные кислоты

Нейтральные липиды

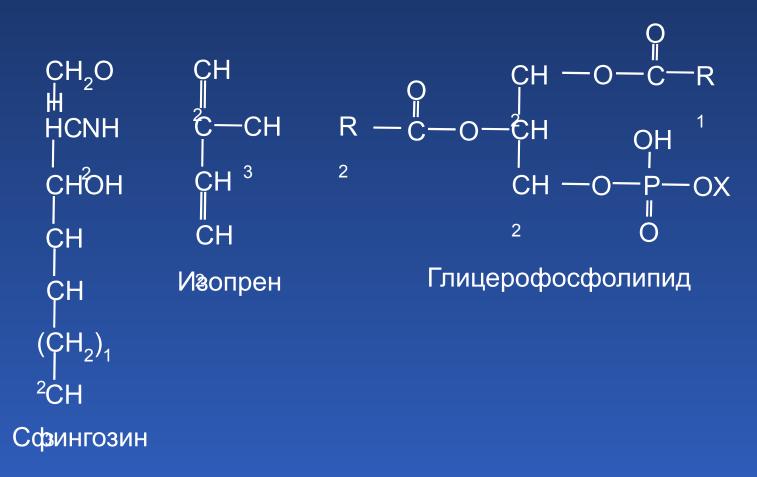
моноацилглицерин

Нейтральные диольные липиды

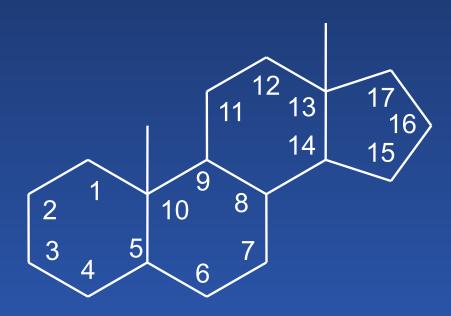
$$\begin{array}{ccc} & & & O \\ & \parallel & \\ CH_2 & -C - (CH_2) & CH \\ \Phi & & & 7 & 3 \\ CH_2O & & & \\ H & & & & \end{array}$$

Этандиол (этиленгликоль) 1,2пропандиол

Моноолеатэтиленгликоля


Нейтральные плазмалогены

(R – ненасыщенный алифатический спирт, R₁, R₂ – жирные кислоты)


Воска

O
$$\parallel$$
 $CH_3(CH_2)_n - C - O - CH_2 (CH_2)_m CH_3$

Гликолипиды

Стероиды

Циклопентапергидрофенантрен

Строение, свойства, биологическая роль углеводов и липидов

Терпены

Общая формула аминокислот

Аминокислоты подразделяются на 4 основные класса:

- неполярные, или гидрофобные (аланин, валин, лейцин, изолейцин, пролин, фенилаланин, триптофан, метионин);
- полярные, но незаряженные (глицин, серин, треонин, цистеин, тирозин, аспарагин, глутамин);
- положительно заряженные (лизин, гистидин, аргинин);
- отрицательно заряженные (аспарагиновая кислота, глутаминовая кислота).

Нейтральная цвиттерионная форма аминокислоты

—NH₂, основная группа, обладает сильным сродством с H⁺-ионамами

—СООН, кислотная группа, диссоциирует с высвобождением H⁺-ионов

Пептидные связи

Связи, стабилизирующие белковую молекулу

Часть молекулы полипептида

Связи, стабилизирующие белковую молекулу

Связи, стабилизирующие белковую молекулу

Дисульфидная связь

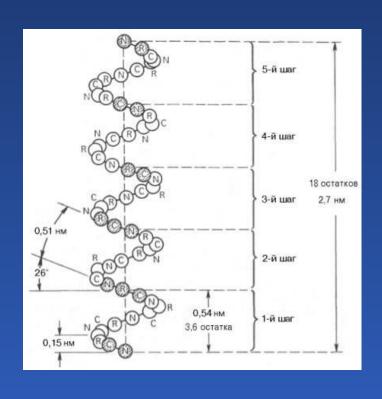
Связи, стабилизирующие белковую молекулу

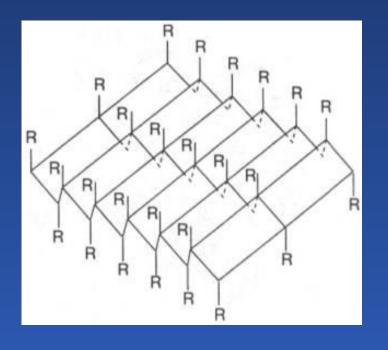
Электроположительные водородные атомы, соединенные с кислородом или азотом в группах –ОН или –NH, стремятся обобществить электроны с находящимся по соседству электроотрицательным атомом кислорода, например, с кислородом группы =CO.


Локализованное электростатическое притяжение

– OH OC

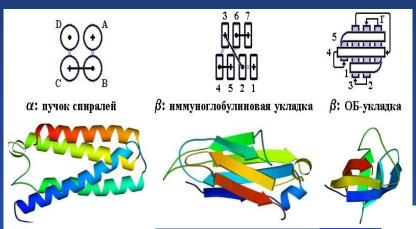
Водородная связь

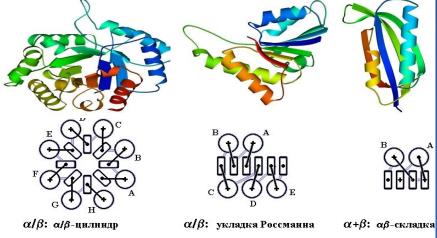

Последовательность аминокислот для каждого белка уникальна и закреплена генетически


Первичная структура характеризует последовательность аминокислотных остатков в полипептидной цепи, связанных ковалентными связями

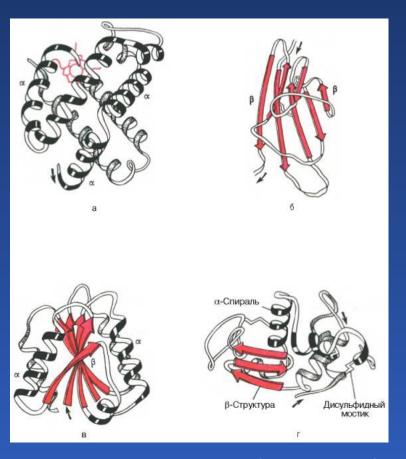
Трипептид: глицилаланиллизин

Вторичная структура белка

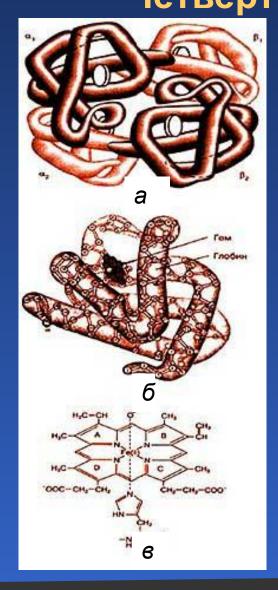




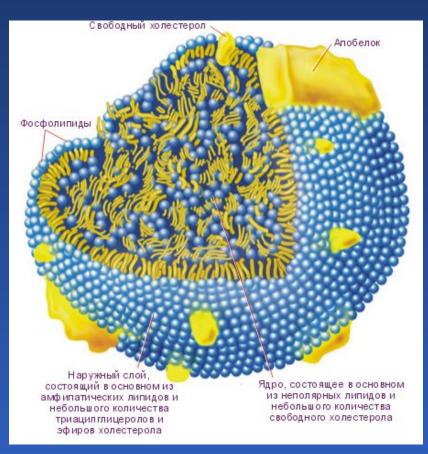
α-спираль


β-складчатая структура

Характерные мотивы укладки белковой цепи в α-, β-, α/β-, и α+β-белках

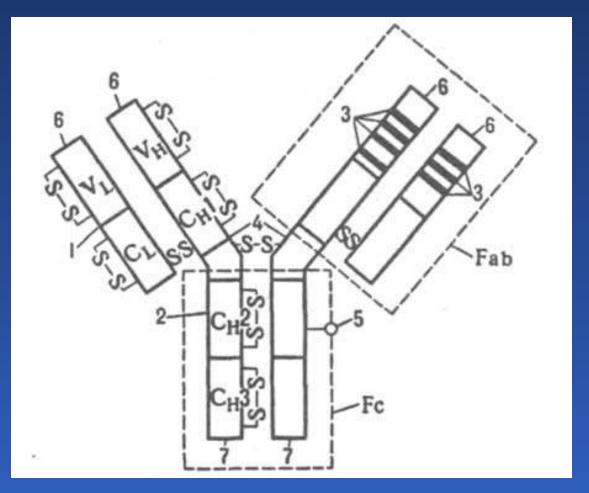


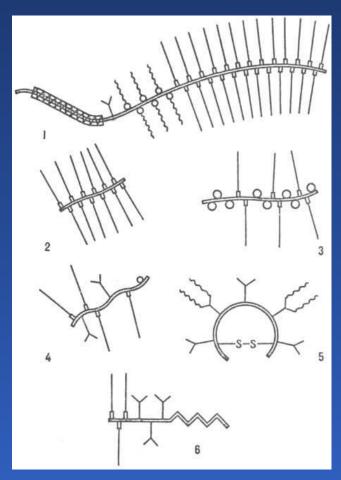
Третичная структура белка


Доменное строение глобулярных белков (по А. А. Болдыреву)

Строение, свойства, биологическая роль белков Четвертичная структура белка

а – гемоглобин,
состоящий из четырех субъединиц
(двух α-цепей и двух β-цепей),
б – одна субъединица,
в – простетическая группа
гемоглобина

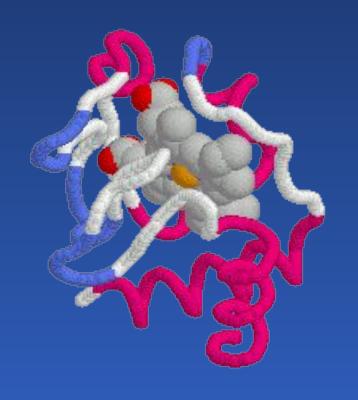

Строение, свойства, биологическая роль белков Сложные белки

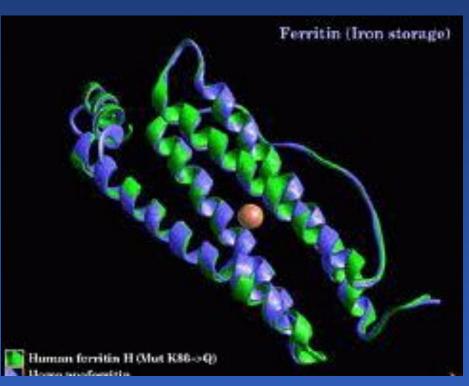

Липопротеины

Сложные белки

Гликопротеины (иммуноглобулин М)

Сложные белки

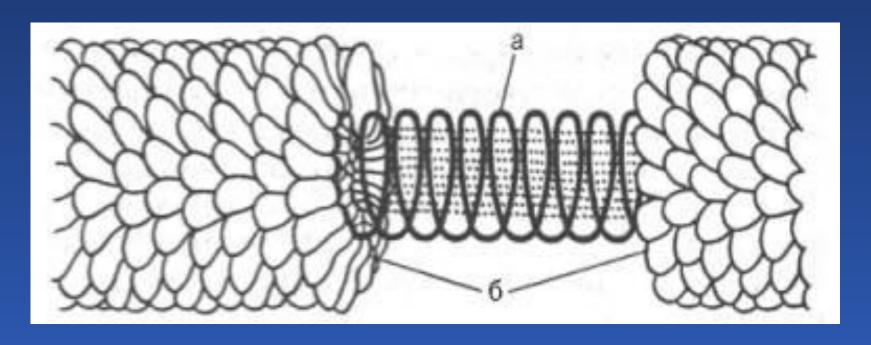



Протеогликаны

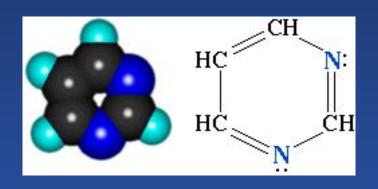
Схематическое изображение структур протеогликанов:

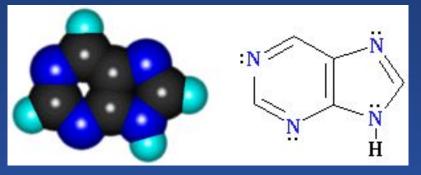
- 1 протеогликан хряща;
- 2 протеогепарин;
- 3 протеодерматансульфат
- с олигосахаридами муцинового типа;
- 4 протеохондроитинсульфат или протеодерматансульфат небольшой молекулярной массы;
- 5 протеокератансульфат роговицы;
- 6 протеогепарансульфат клеточной поверхности

Сложные белки (металлопротеины)



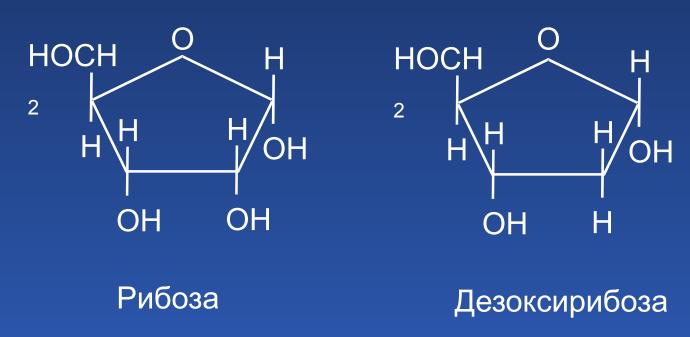
Цитохром с


Ферритин


Сложные белки (нуклеопротеины)

Модель вируса мозаичной болезни табака: а – спираль РНК; б – субъединицы белка

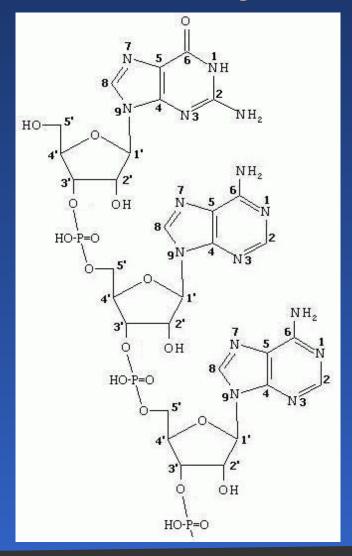
Строение нуклеотидов. Компоненты нуклеотидов



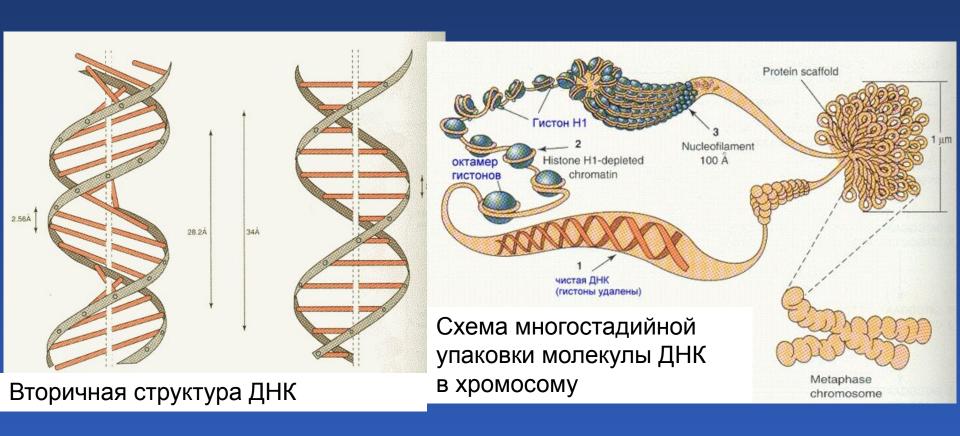
Пиримидин С₄Н₄N₂ – шестичленный гетероцикл с двумя атомами азота

Пурин С₅H₄N₄ – соединение, в котором сочетаются структуры шести- и пятичленного гетероциклов, с двумя атомами азота

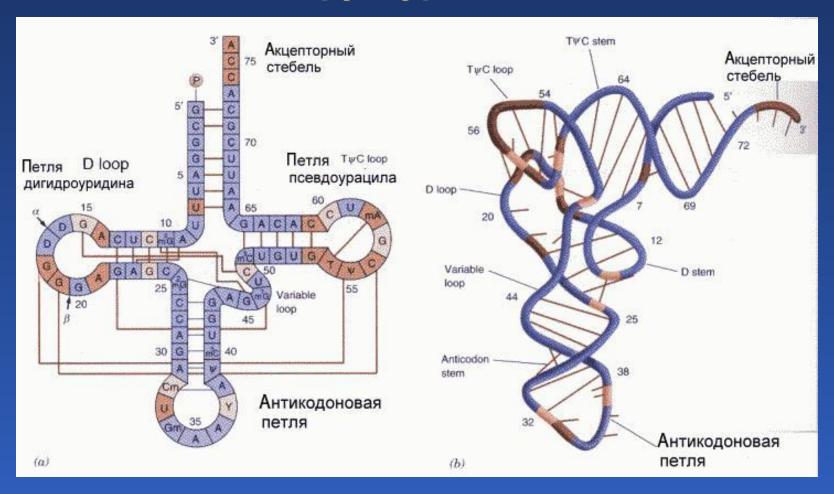
Строение нуклеотидов. Компоненты нуклеотидов


2 вида нуклеиновых кислот – рибонуклеиновая кислота (РНК), которая содержит рибозу, и дезоксирибонуклеиновая кислота (ДНК), в которой на один атом кислорода меньше

Образование нуклеотида


Аденозинтрифосфорная кислота

Строение, свойства, биологическая роль нуклеотидов Структурная формула никотинамиддинуклеотида (НАД)


Фрагмент полинуклеотида

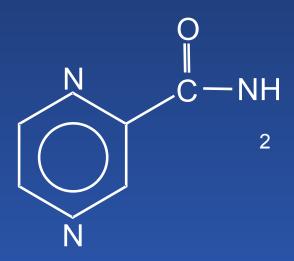
Строение, свойства, биологическая роль нуклеотидов Структура ДНК

Структура РНК

Транспортная РНК

1.4. Витамины, ферменты

Водорастворимые витамины

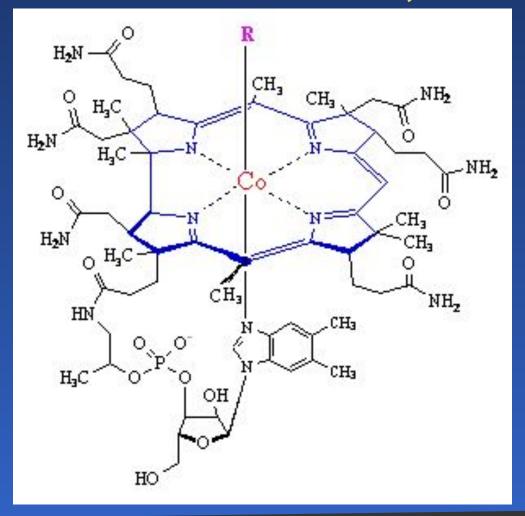

Витамин В1 (тиамин)

Водорастворимые витамины

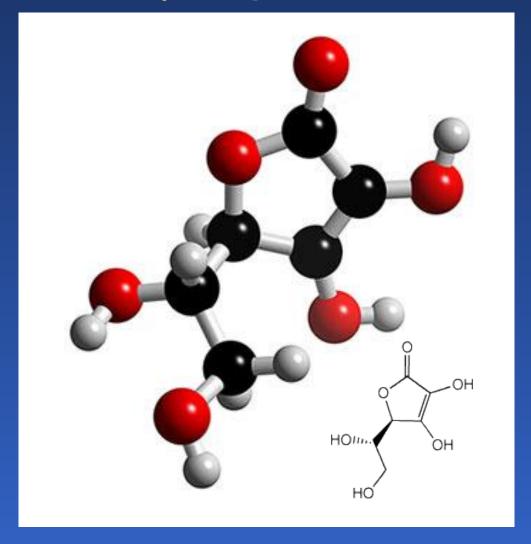
Витамин В2 (рибофлавин)

Витамин РР (В5). Никотинамид

Никотиновая кислота


Никотинамид

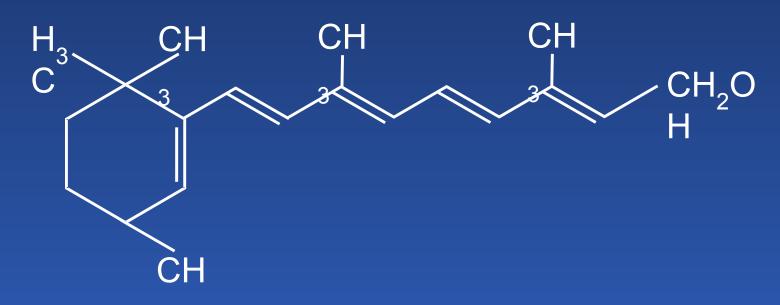
Водорастворимые витамины



Витамин В6 (пиридоксин)

Витамин В12 (антианемический витамин, кобаламин)

Витамин С (аскорбиновая кислота)


Водорастворимые витамины

Витамин Н (биотин)

Водорастворимые витамины

Фолиевая кислота

Жирорастворимые витамины

3 Витамин А (ретинол)

Жирорастворимые витамины

Витамин D (антирахитический)

Жирорастворимые витамины

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Витамин Е (токоферол)

Ферменты

- Наиболее крупный специализированный класс белковых молекул, катализирующих химические реакции, из которых слагается клеточный обмен.
- Белки, увеличивающие скорости биохимических реакций в 1010 раз по сравнению со скоростями тех же реакций в отсутствие ферментов.

Химическая кинетика

В соответствии с законом действующих масс для реакции

$$A + B \rightarrow C + D$$

скорость может выражаться уравнением

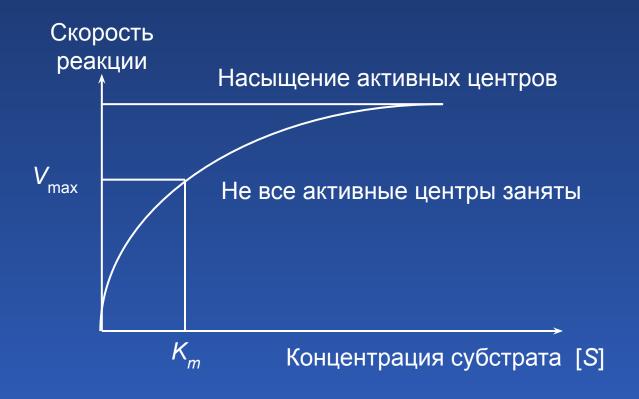
$$v = K[A] \cdot [B],$$

где *v* – скорость реакции;

К – константа скорости, отражающая влияние химической природы вещества и условий, в которых протекает реакция, на ее скорость;
 [А] и [В] – концентрация реагентов.

Кинетика ферментативных реакций

Вещества, реакцию превращения которых ускоряют ферменты (E), называются субстратами (S). В ходе ферментативной реакции образуется ферментсубстратный комплекс (ES). Фермент-субстратный комплекс становится нестабильным и затем преобразуется в комплекс «фермент – продукт», который распадается на фермент и продукты реакции (P):


$$S + E \rightarrow ES \rightarrow E + P$$
.

Кинетика ферментативных реакций

Действие ферментов как катализаторов обладает некоторыми особенностями:

- фермент не способен вызвать новую химическую реакцию, он ускоряет уже идущую;
- фермент не изменяет направление реакции, определяемое концентрациями реагентов, катализирует как прямую, так и обратную реакции.

Константа Михаэлиса

Фермент увеличивает скорость реакции

- понижая свободную энергию переходного состояния путем стабилизации активированного комплекса;
- увеличивая энергию субстрата, когда тот связывается с ферментом при образовании фермент-субстратного комплекса;
- поддерживая микроокружение активного центра в состоянии, отличном от такового в водной среде;
- располагая реагирующие атомы в правильной ориентации и на необходимом расстоянии друг от друга так, чтобы обеспечить оптимальное протекание реакции.

Классификация активности ферментов

Оксидоредуктазы

(окислительно-восстановительные реакции)

Оксидоредуктазы осуществляют перенос атомов *H* и *O* или электронов от одного вещества к другому.

<u>Дегидрогеназы</u> катализируют окислительновосстановительные реакции, происходящие путем отнятия электронов и протонов от одного субстрата и переноса их на другой:

$$AH + B \rightarrow A + BH$$
.

Оксидазы катализируют перенос водорода с субстрата на кислород:

$$AH_2 + 1/2 O_2 \rightarrow A + H_2O$$

<u>Гидроксилазы и оксигеназы</u> ускоряют некоторые реакции биологического окисления, протекающие с присоединением гидроксила или кислорода к окисляемому веществу.

Классификация активности ферментов

Трансферазы (перенос функциональных групп)

Ускоряют перенос определенной группы атомов от одного вещества к другому:

$$AB + C \rightarrow A + BC$$

Метилтрансферазы переносят метильную группу, Ацилтрансферазы — кислотный остаток (ацил), Гликозилтрансферазы — моносахаридный остаток (гликозил), Аминотрансферазы — аминную группу, Фосфотрансферазы — остаток фосфорной кислоты (фосфорил).

Классификация активности ферментов

Гидролазы (реакции гидролиза)

Ускоряют реакции гидролиза, при которых из субстрата образуются 2 продукта. К гидролазам относятся все пищеварительные ферменты:

$$AB + H_2O \rightarrow AOH + BH$$

<u>Эстеразы</u> ускоряют гидролиз сложных эфиров (различных липидов) на спирты и кислоты.

<u>Фосфатазы</u> катализируют гидролитическое отщепление фосфорной кислоты от нуклеотидов и фосфорных эфиров углеводов.

Глюкозидазы ускоряют гидролиз сложных углеводов.

Пептидгидролазы ускоряют гидролиз пептидных связей в белках и пептидах.

Классификация активности ферментов

Лиазы

Лиазы ускоряют негидролитическое присоединение к субстрату или отщепление от него группы атомов. При этом могут разрываться связи:

C-C, C-N, C-O, C-S.

Классификация активности ферментов

Изомеразы (реакции изомеризации)

Внутримолекулярные перестройки:

 $AB \rightarrow BA$

Классификация активности ферментов

Лигазы (образование связей за счет АТФ)

Лигазы катализируют реакции синтеза высокомолекулярных полимеров из мономеров за счет энергии гидролиза АТФ:

$$X + Y + AT\Phi \rightarrow XY + AД\Phi + \Phi H$$

Гормоны — это биологически активные вещества, синтезируемые эндокринными железами, выделяемые ими в кровь или лимфу и регулирующие внутриклеточный метаболизм. Гормональная регуляция биологических процессов есть высшая форма гуморальной регуляции. Гормоны обладают специфичностью и воздействуют только на те клетки-мишени, которые обладают специальными рецепторами белковой или липопротеиновой природы, реагирующими с данным гормоном.

Механизм действия гормонов

Гормоны регулируют метаболизм клеток-мишеней через изменение активности ферментных систем:

- путем изменения индукции ферментов;
- путем изменения проницаемости плазматических мембран;
- путем изменения количества ц-АМФ.

Гормоны гипоталамуса

Гормоны гипоталамуса являются относительно простыми по структуре олигопептидами.

К ним относятся: кортиколиберин, тиролиберин, люлилиберин, фоллиберин, соматолиберин, соматостатин, пролакстатин, пролактолиберин, меланолиберин, меланостатин.

Гормоны гипофиза

Гипофиз синтезирует тропные и эффекторые гормоны

Тропные гормоны:

- АКТГ (адренокортикотропный гормон) пептид, регулирующий биосинтез и секрецию гормонов коры надпочечников;
- ТТГ (тиреотропный гормон) гликопротеид, регулирующий биосинтез и секрецию гормонов щитовидной железы;
- ФСГ (фолликулостимулирующий гормон), ЛГ (лютеинизирующий гормон) гликопротеиды, регулирующие биосинтез и секрецию гормонов половых желез.

Гормоны гипофиза

Гипофиз синтезирует тропные и эффекторые гормоны

Эффекторные гормоны

- АДГ (антидиуретический гормон, вазопрессин) простой пептид, регулирующий водный обмен, уменьшает мочеотделение.
- Окситоцин простой пептид, вызывающий сокращение матки во время родов и активное выделение молока молочными железами.
- Меланостимулирующий гормон простой пептид, регулирующий сезонное окрашивание кожи, шерсти.
- Пролактин простой белок, регулирующий выделение молока молочными железами при кормлении.
- Гормон роста (соматотропный) простой белок, регулирующий рост тела в длину, усиливает процессы анаболизма.

Гормоны поджелудочной железы

Гормоны поджелудочной железы **инсулин** (белок из 51 аминокислотного остатка) и **глюкагон** (одноцепочечный полипептид из 29 аминокислотных остатков) не находятся под контролем гормонов гипофиза. Секреция гормонов регулируется содержанием глюкозы в крови.

Гормоны щитовидной железы

Тиреоидные гормоны

Тироксин и трийодтиронин являются производными аминокислотами тирозина и содержат в своем составе 4 и 3 атома йода соответственно. Тиреоидные гормоны регулируют активность ферментных систем обмена углеводов и липоидов, синтеза белка, интенсивность транспорта субстратов и кофакторов, биоэнергетические процессы.

Гормоны коры надпочечников

Секреция гормонов коры надпочечников регулируется адренокортикотропным гормоном (АКТГ) гипофиза.

Из коры надпочечников выделено 46 соединений стероидной природы, производных циклопентапергидрофенантрена.

Они подразделяются на 3 функциональные группы – <u>глюкокортикоиды</u>, <u>минералокортикоиды</u> и <u>половые гормоны.</u>

Гормоны мозгового вещества надпочечников

Гормоны мозгового вещества надпочечников – адреналин и норадреналин (катехоламины).

Гормоны: биологическая роль, классификация, механизм действия **Гормоны половых желез**

Мужские половые гормоны (андрогены) образуются в семенниках, женские половые гормоны (эстрогены, прогестины) продуцируются преимущественно в яичниках. Половые гормоны являются производными циклопентапергидрофенантрена.

Гормоны паращитовидной железы

Паращитовидные железы секретируют 2 гормона (паратгормон и кальцитонин), которые вместе с витамином Д обеспечивают регуляцию кальциевого обмена.

Гормоны тимуса (вилочковой железы)

В тимусе продуцируется 5 гормонально-активных факторов (полипептидов по природе):

тимозин, гомеостатический тимусный гормон, тимопоэтины 1 и 11, тимусный гуморальный фактор.

Основная функция гормонов вилочковой железы – регуляция созревания определенных популяций лимфоидных клеток, то есть участие в регуляции функционирования иммунной системы.

БИОХИМИЯ ЧАСТЬ 2

Динамическая биохимия

Оглавление

- 2.1. Переваривание углеводов в пищеварительном тракте. Гликолиз. Окислительное декарбоксилирование пирувата
- 2.2. Аэробный метаболизм углеводов
- 2.3. Липидный обмен
- 2.4. Белковый обмен
- 2.5. Интеграция клеточного обмена

2.1. Переваривание углеводов в пищеварительном тракте. Гликолиз. Окислительное декарбоксилирование пирувата

Переваривание углеводов в пищеварительном тракте. Гликолиз. Окислительное декарбоксилирование пирувата

Метаболические пути и обмен энергии

В обмене веществ выделяют внешний обмен и промежуточный.

Внешний обмен – внеклеточное переваривание веществ на путях их поступления и выделения из организма.

Промежуточный обмен – совокупность всех ферментативных реакций в клетке.

Переваривание углеводов в пищеварительном тракте. Гликолиз. Окислительное декарбоксилирование пирувата

Метаболические пути и обмен энергии

Метаболизм выполняет 4 основные функции:

- 1) извлечение энергии из окружающей среды (либо в форме химической энергии органических веществ, либо в форме энергии солнечного света);
- 2) превращение экзогенных веществ в строительные блоки в предшественников макромолекулярных компонентов клетки;
- 3) сборку белков, нуклеиновых кислот, жиров и др. клеточных компонентов из этих строительных блоков;
- 4) синтез и разрушение тех биомолекул, которые необходимы для выполнения различных специфических функций данной клетки.

Переваривание углеводов в пищеварительном тракте. Гликолиз. Окислительное декарбоксилирование пирувата

Метаболические пути и обмен энергии

Метаболические пути:

- 1) катаболические;
- 2) анаболические;
- 3) амфиболические.

Переваривание углеводов в пищеварительном тракте. Гликолиз. Окислительное декарбоксилирование пирувата

Метаболические пути и обмен энергии

Катаболизм включает 3 основных этапа:

- 1) крупные пищевые молекулы расщепляются на составляющие их строительные блоки (аминокислоты, моносахариды, жирные кислоты и др.);
- 2) продукты, образовавшиеся на 1-й стадии, превращаются в более простые молекулы, число которых невелико ацетил-КоА и др.;
- 3) эти продукты окисляются до CO_2 и воды.

Метаболические пути и обмен энергии

Анаболические пути – это ферментативный синтез сравнительно крупных клеточных компонентов из простых предшественников. Процессы связаны с потреблением свободной энергии, которая поставляется в форме энергии фосфатных связей АТФ. Анаболизм включает в себя также 3 стадии, в результате чего образуются биополимеры.

Метаболические пути и обмен энергии

Амфиболические пути – двойственные. Связывают катаболические и анаболические пути.

Переваривание углеводов

Полисахариды и олигосахариды распадаются до более простых соединений путем гидролиза. Расщепление крахмала и гликогена начинается в полости рта под действием амилазы слюны, относящейся к классу гидролаз, подклассу гидролаз гликозидов.

Известны 3 вида амилаз, различающиеся по конечным продуктам: α-амилаза, β-амилаза и γ-амилаза.

Всасывание моносахаридов

Продукты полного переваривания углеводов – глюкоза, галактоза, фруктоза – через стенки кишечника поступают в кровь.

Моносахариды поступают через клеточные мембраны путем облегченной диффузии, с участием специальных переносчиков.

Для переноса глюкозы и галактозы существует активный транспорт по механизму симпорта.

Гликолиз

Гликолиз – центральный путь катаболизма глюкозы в животных, растительных клетках и микроорганизмах. Это наиболее древний путь, в результате которого глюкоза подвергается анаэробному расщеплению. Может протекать в клетке в аэробных и анаэробных условиях.

Гликолиз


АТФ – стандартная единица, в виде которой запасается высвобождающаяся при дыхании энергия.

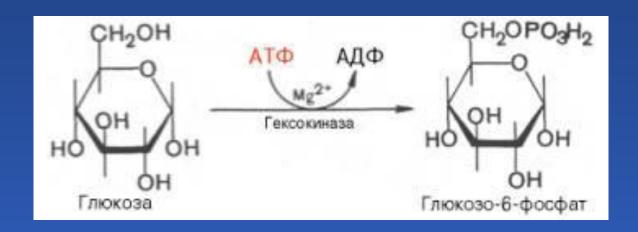
Аденозинтрифосфорная кислота

Гликолиз

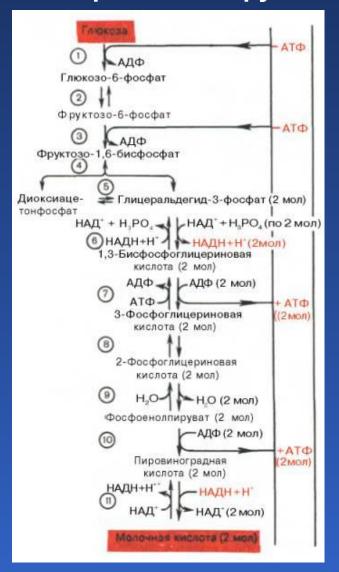
Брожение и дыхание

Гликолиз

$$C_6H_{12}O_6 + 2\Phi_H + 2AД\Phi \rightarrow 2CH_3CHOHCOOH + 2AT\Phi + 2H_2O$$

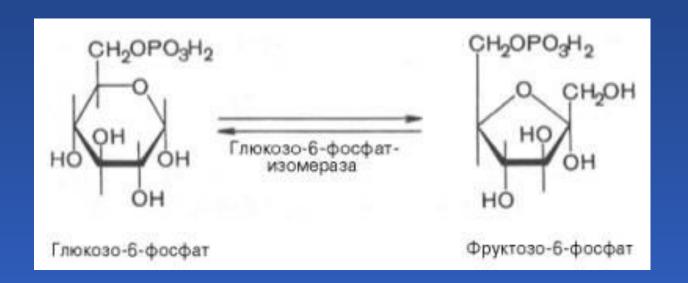

Глюкоза
$$\rightarrow$$
 2 Лактат Δ G1` = $-47,0$ ккал
2Фн + 2АДФ \rightarrow 2АТФ + 2H $_2$ О G 2` = $+2.7,30$ = $+14,6$ ккал

Суммарная реакция:

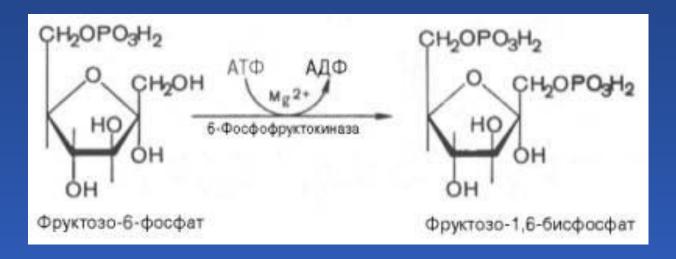

Глюкоза + 2Фн + 2АДФ
$$\rightarrow$$
 2Лактат + 2АТФ + 2 H_2 О ΔGs ` = ΔG 1` + ΔG 2` = $-47,0$ + 14,6 = $-32,4$ ккал

Ферментативные реакции первой стадии гликолиза

АТФ +
$$D$$
-глюкоза \rightarrow АДФ + D -глюкозо-6-фосфат, $\Delta G' = -4$ ккал



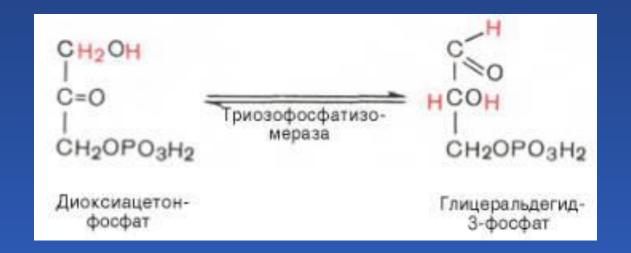
Гликолиз


Превращение глюкозо-6-фосфат во фруктозо-6-фосфат

D-глюкозо-6-фосфат \leftrightarrow D-фруктозо-6-фосфат, $\Delta G'$ = + 0,4 ккал

Образование фруктозо-1,6-дифосфата

АТФ + фруктозо-6-фосфат
$$\rightarrow$$
 АДФ + фруктозо-1,6-дифосфат, $\Delta G' = -3,4$ ккал



Расщепление фруктозо-1,6-дифосфата

Фруктозо-1,6-дифосфат \rightarrow Диоксиацетонфосфат + D-глицеральдегид-3-фосфат, $\Delta G' = +5,73$ ккал

Взаимопревращение триозофосфатов

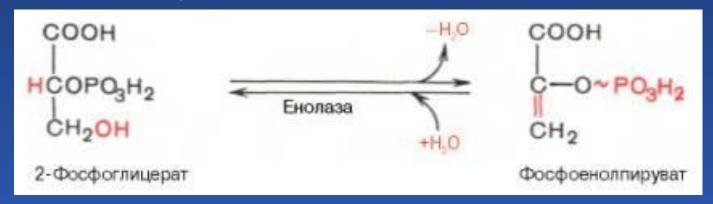
Диоксиацетонфосфат \leftrightarrow *D*-глицеральдегид-3-фосфат

Окисление глицеральдегид-3-фосфата до 1,3-дифосфоглицерата

Глицеральдегид-3-фосфат+ НАД++ Фн \rightarrow 1,3-дифосфоглицерат + НАД * H + H+, $\Delta G'$ = +1,5 ккал

Перенос фосфатной группы от 1,3-дифосфоглицерата на АДФ

1,3-фосфоглицерат + АДФ \rightarrow 3-фосфоглицерат + АТФ, $\Delta G'$ = - 4,5 ккал


Превращение 3-фосфоглицерата в 2-фосфоглицерат

3-фосфоглицерат ↔ 2-фосфоглицерат

Дегидратация 2-фосфоглицерата с образованием фосфоенолпирувата

2-фосфоглицерат → Фосфоенолпируват + H_2O , $\Delta G' = + 0,44$ ккал

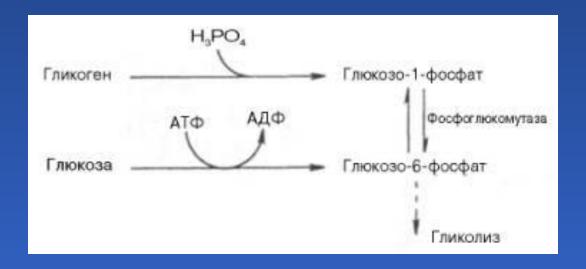
Перенос фосфатной группы от фосфоенолпирувата на АДФ

Фосфоенолпируват + АДФ \rightarrow Пируват + АТФ, $\Delta G' = -7.5$ ккал

Восстановление пирувата до лактата

Пируват + НАД*H + H
$$\leftrightarrow$$
 Лактат + НАД*, $\Delta G'$ = - 6,0 ккал

Полный баланс гликолиза


Глюкоза + 2АТФ + 2НАД
$$^+$$
 + 2Фн + 4АДФ + 2НАДН +2Н+ +2Лактат + 2АДФ + 2НАДН + 2Н $^+$ + 2НАД $^+$ + 4АТФ + 2Н $_2$ О

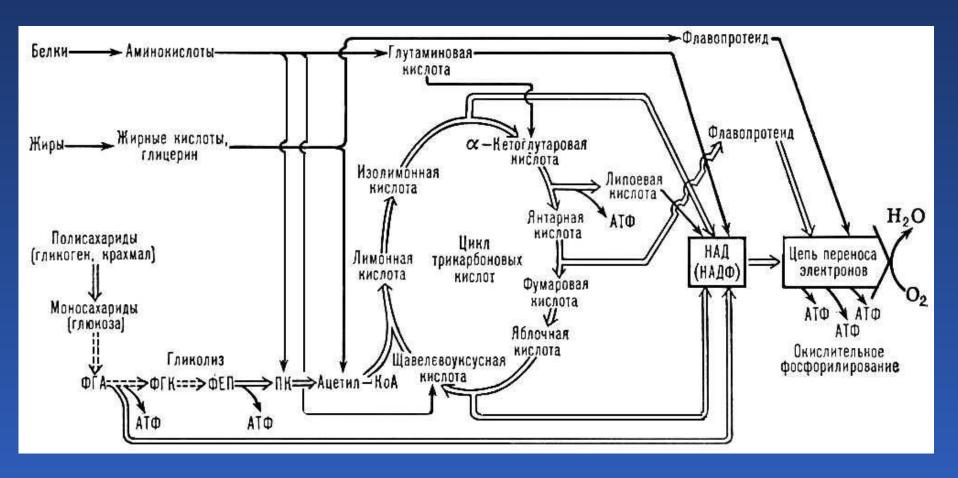
Вычеркнув одни и те же члены получим:

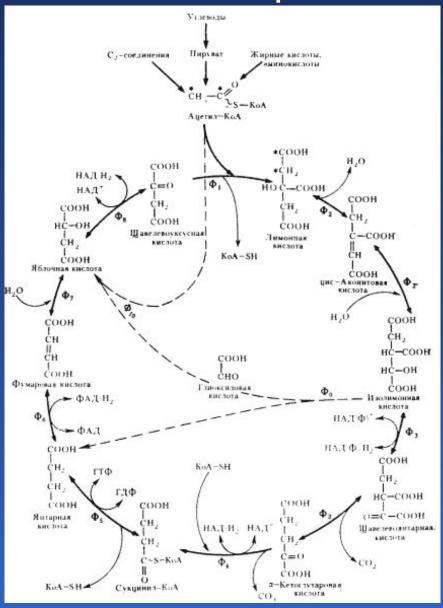
Глюкоза + 2 Φ н + 2AД Φ \rightarrow 2Лактат + 2AТ Φ + 2 H_2 О

Гликогенолиз

Гликоген \rightarrow глюкозо-1-фосфат \rightarrow глюкозо-6-фосфат \rightarrow ... \rightarrow 2лактат

Аэробный метаболизм углеводов Энергетика брожения и дыхания


Глюкоза
$$\to 2$$
Лактат, $\Delta G' = -47$ ккал (гликолиз)
Глюкоза $+6O_2 \to 6CO_2 + 6H_2O$, $\Delta G' = -686$ ккал (дыхание)


Аэробный метаболизм углеводов Общая схема дыхания

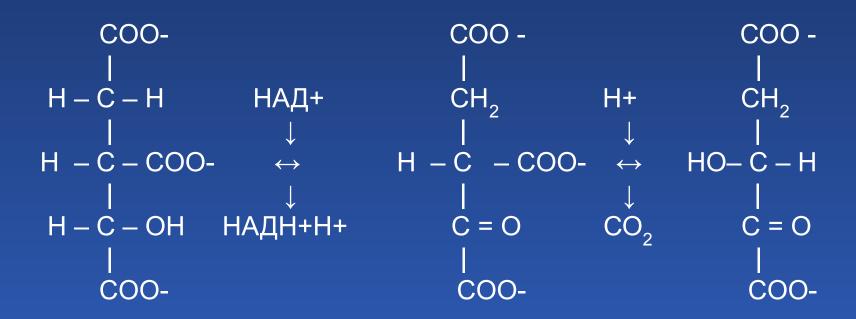
Суммарная реакция цикла трикарбоновых кислот описывается уравнением:

Ацетил-CoA + 3HAД+ + ФАД + ГДФ + Фн +
$$H_2O \rightarrow 2CO_2$$
 + +3HAДH + ФАД H_2 + ГТФ + 2H+ + CoA

Общая схема дыхания



Цикл трикарбоновых кислот (цикл Кребса)


Цитрат-синтаза

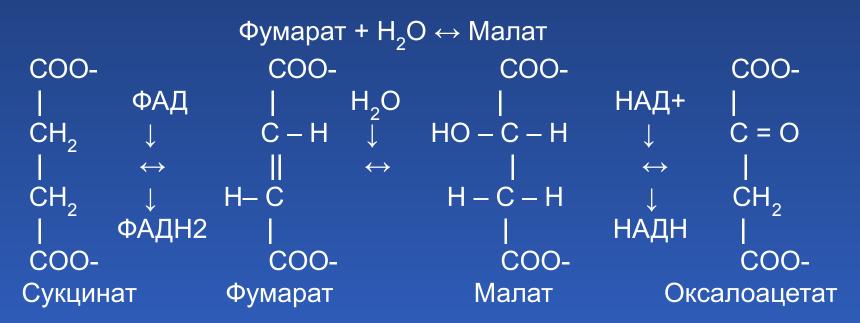
Аконитазное равновесие

Изоцитратадегидрогеназа

Суммарная реакция, катализируемая изоцитратадегидрогеназой:

Изоцитрат

Оксалосукцинат

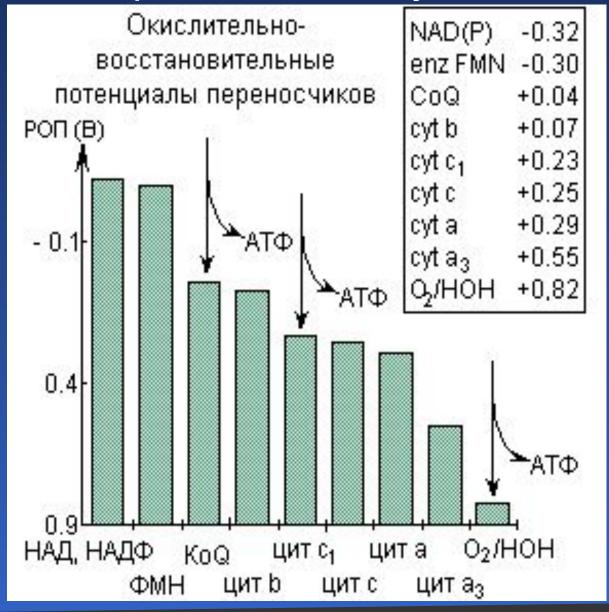

α-кетоглутарат

Окисление α-кетоглутарата до сукцината

Сукцинатдегидрогеназа

Сукцинат + Е-ФАД ↔ Фумарат + Е-ФАДН2

Фумараза



Аэробный метаболизм углеводов Окисление малата до оксалоацетата

Малат + НАД+ ↔ Оксалоацетат + НАДН + Н+

Путь переноса электронов – дыхательная цепь

```
НАДН + H+ + E1 – ФАД \rightarrow НАД+ + E1 – ФАДН2
E1 – ФАДН2 + 2E2 – Fe(111) \rightarrow E1– ФАД + 2E2 – Fe(11) + 2H+
2E2 – Fe(11) + 2H+ + KoQ \rightarrow 2E2 – Fe(111) + KoQH2
KoQ H2 + 2 Цит.b(111) \rightarrow KoQ + 2H+ + 2 Цит.b(111)
2Цит.b(11) + 2 Цит.c(111) \rightarrow 2Цит.b(111) + 2Цит.c(11)
2Цит.c(11) + 2 Цит. a (111) \rightarrow 2Цит.c(111) + 2Цит.a(11)
2Цит.a(11) + 2Цит.a3(111) \rightarrow 2Цит.a3(111) + 4_{_{2}}O
```


Аэробный метаболизм углеводов

Суммарное уравнение процесса фосфорилирования в дыхательной цепи:

НАДН + 2H+ + 3АДФ + Фн +
$$1/2O_2 \rightarrow HАД+ + 4H_2O + 3АТФ$$

Экзергонический компонент:

НАДН + 2H+ + 1/2
$$O_2 \rightarrow$$
 НАД+ + H_2O , $\Delta G' = -52,7$ ккал

Эндергонический компонент:

$$3AД\Phi + 3\Phi H \rightarrow 3AT\Phi + 3H_{2}O, \Delta G' = + 21,9$$
 ккал

Аэробный метаболизм углеводов

Баланс энергии

Суммарные реакции аэробного дыхания:

$${
m C_6H_{12}O_6}$$
 + 2Фн + 2АДФ + 2НАД+ → 2Пируват+2НАДН+2Н+ +2АТФ+2 ${
m H}_2{
m O}$ 2Пируват + 2НАД+ → 2Ацетил—S—КоА + 2НАДН + 2H+ + 2CO $_2$ 2Ацетил—S—КоА + 6НАД+ + ФП + 2АДФ + 2Фн → ${
m CO}_2$ + 6НАДН 6H+ + ФПН2 + 2АТФ

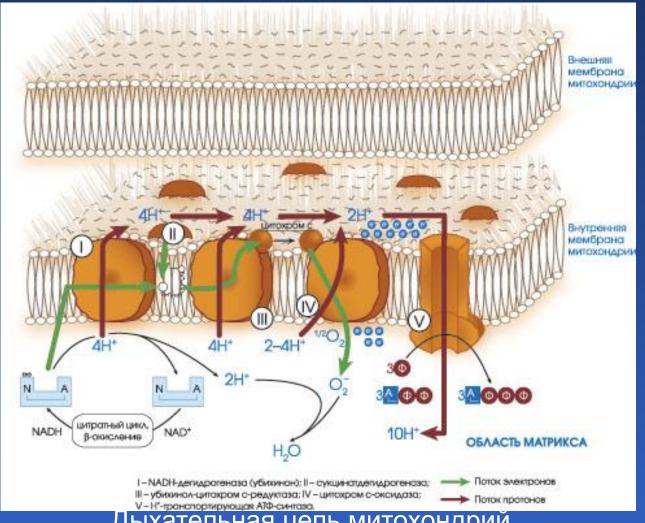
Суммируя три уравнения пролучим:

Глюкоза+Фн+4АДФ+НАД++ФП
$$\rightarrow$$
 6CO $_2$ +10HAДH+10H+ +4ATФ+ФПН2+2H $_2$ O 10 HAДH + 10 H+ + 32 Фн + 32 АДФ + 6 О $_2$ + 3 ФПН2 \rightarrow 32 АТФ + 40 H $_2$ O

Экзергонический компонент:

Глюкоза +
$$6O_2 \rightarrow 6CO_2 + 6H_2O$$
, $\Delta G' = -680$ ккал

Эндергонический компонент:


$$34\Phi \text{H} + 36\text{А}\Box\Phi \rightarrow 36\text{A}\Box\Phi + 42\text{H}_2\text{O}, \Delta\textit{G}' = + 263 \ \text{ккал}$$

Таким образом, общая эффективность накопления энергии составляет:

263/680·100 = 39 %

Аэробный метаболизм углеводов

Химио-осмотическая гипотеза Митчелла

Дыхательная цепь митохондрий

2.3. Липидный обмен

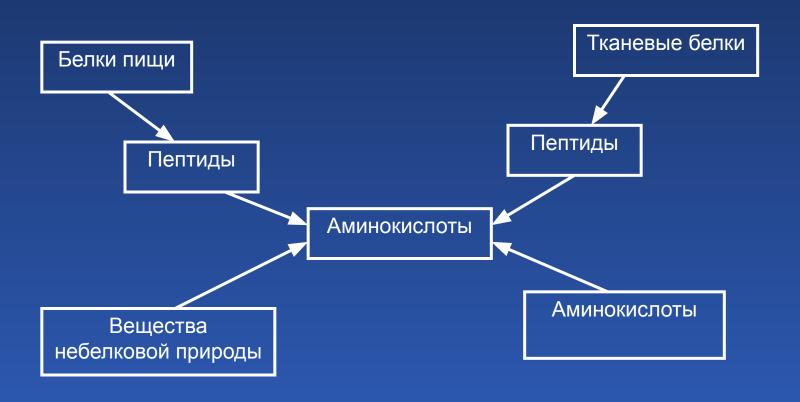
Липидный обмен

Превращение липидов в процессе пищеварения.

Всасывание продуктов переваривания липидов и ресинтез липидов в кишечной стенке.

Внутриклеточные процессы расщепления и синтеза липидов различных классов.

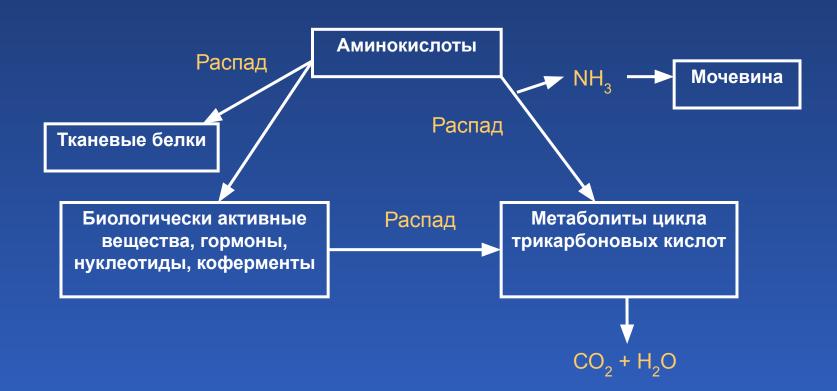
Обмен триглицеридов и холестерина в тканях.


Интеграция и регуляция метаболизма липидов.

Нарушение обмена липидов при ожирении.

2.4. Белковый обмен

Белковый обмен


Общие представления об обмене белков

Общий фонд аминокислот

Белковый обмен

В клетках аминокислоты могут включаться в синтез новых белков или разрушаться в процессе диссимиляции до конечных продуктов обмена

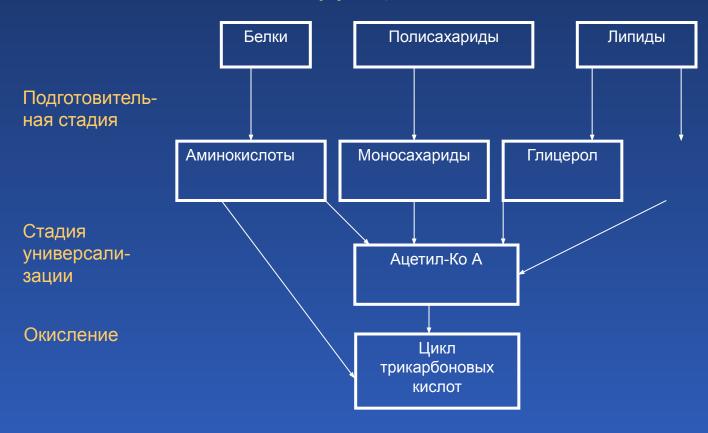
Белковый обмен

Пищеварение белков.

Синтез белков.

Внутриклеточный распад белков.

Пути выведения аммиака из организма.


Суммарное уравнение цикла имеет вид:

$$2NH_3 + CO_2 + 3AT\Phi \rightarrow NH_2 - CO - NH_2 + 2AД\Phi + 2H_3PO_4 + AM\Phi + H_4P_2O_7$$

2.5. Интеграция клеточного обмена

Интеграция клеточного обмена

Взаимосвязь процессов обмена углеводов, липидов, белков

Интеграция клеточного обмена

Внутриклеточная регуляция обмена веществ

В клетке скорость химических реакций определяется:

- 1) доступностью субстратов (концентрация реагирующих веществ);
- 2) активностью ферментов (конкурентное и неконкурентное торможение, аллостерическая регуляция);
- 3) количеством ферментов;
- 4) доступностью кофакторов (АТФ, ФДФ, НАД+, НАДФ+ и др.).

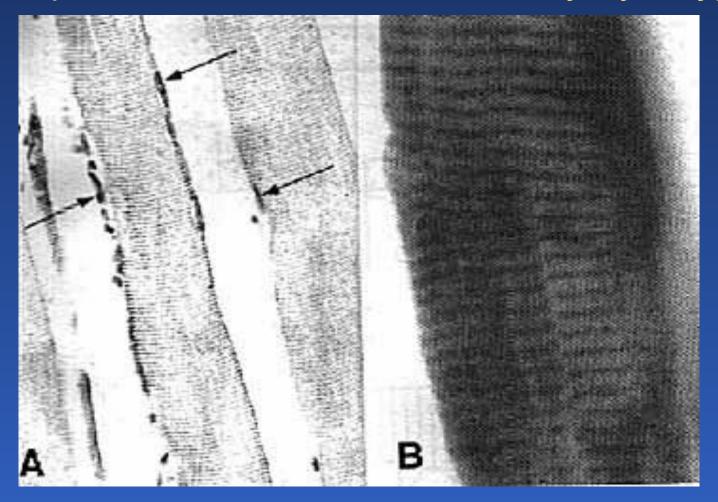
Нервная и гормональная регуляция обмена веществ

БИОХИМИЯ

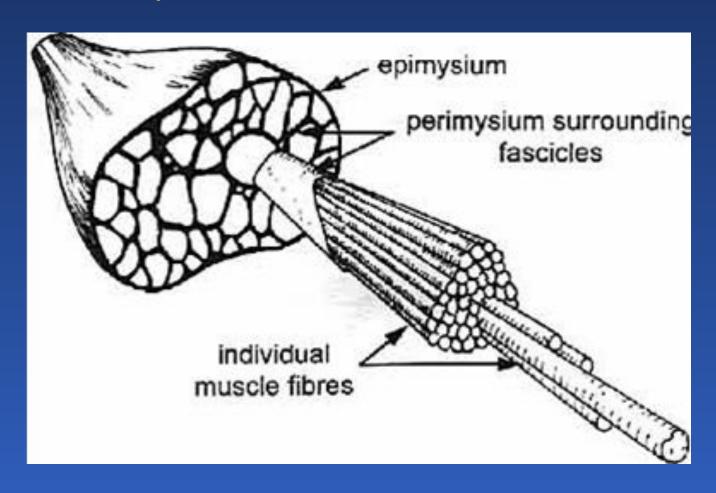
ЧАСТЬ 3

Спортивная биохимия

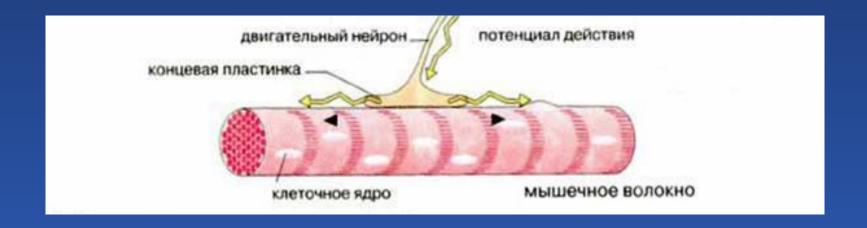
Оглавление

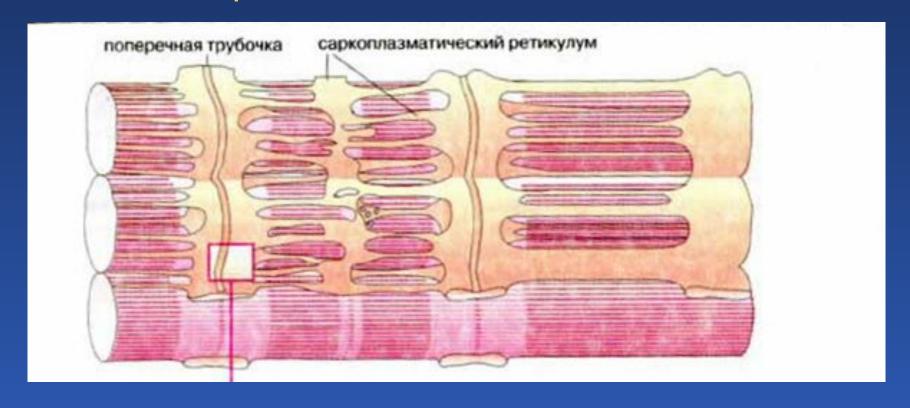

- 3.1. Биохимия мышечного сокращения
- 3.2. Энергетическое обеспечение мышечной деятельности
- 3.3. <u>Биохимические изменения в организме при работе</u> различного характера. <u>Биохимические изменения при утомлении</u>
- 3.4. Биохимические превращения в период восстановления после мышечной работы
- 3.5. Закономерности биохимической адаптации под влиянием систематической тренировки
- 3.6. <u>Биохимический контроль при занятиях физической культурой и спортом</u>
- 3.7. Биохимические основы силы, быстроты и выносливости
- 3.8. <u>Биохимическое обоснование методики занятий физической культурой и спортом с лицами разного возраста.</u>

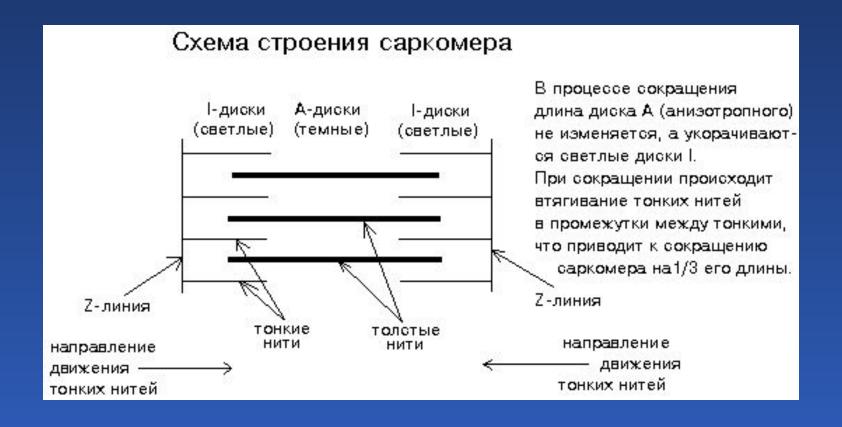
 <u>Биохимические основы рационального питания при занятиях физической культурой</u>
- 3.9. Библиографический список


Типы мышечных волокон:

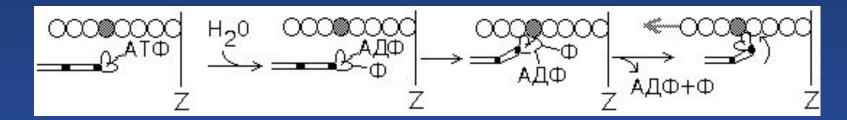
- скелетные;
- сердечные (миокард);
- гладкие.


Поперечно-полосатая скелетная мускулатура


Строение скелетной мышцы


Биохимия мышечного сокращения Ультраструктура мышечного волокна

Строение мышечного волокна


Структура миофибриллы

В основе модели скользящих нитей лежат следующие факты:

- при сокращении мышцы длины толстых и тонких нитей саркомера не изменяются;
- саркомер укорачивается за счет перекрывания толстых и тонких нитей, которые скользят друг относительно друга во время сокращения мышцы; это проявляется в том, что при сокращении мышцы полосы *H* и *I* укорачиваются;
- сила, развиваемая мышцей, создается в процессе движения соседних нитей.

Гидролиз АТФ до АДФ и неорганического фосфата

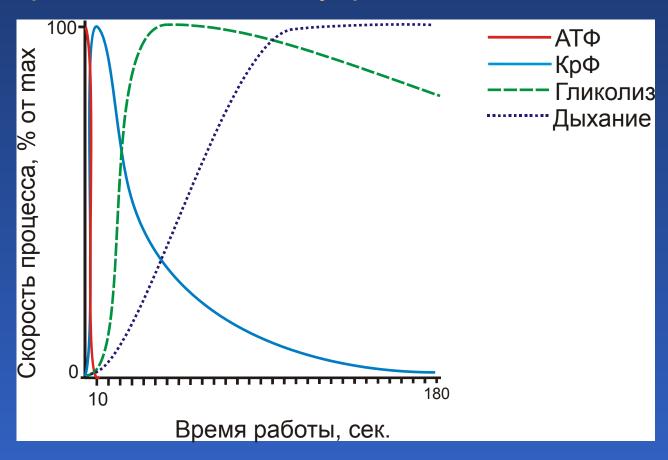
Ресинтез АТФ:

- анаэробный механизм;
- аэробный механизм.

Энергетическое обеспечение мышечной деятельности Анаэробные механизмы:

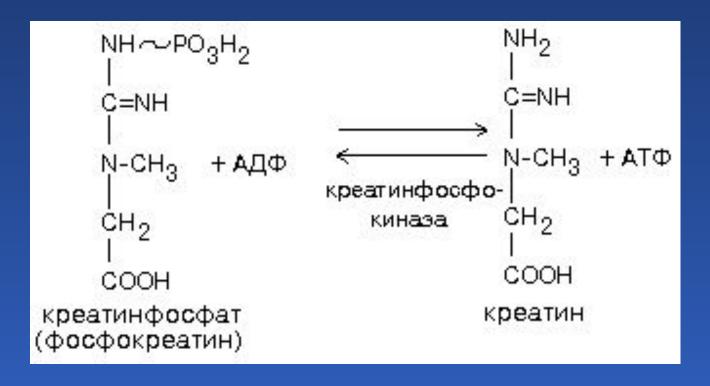
- креатинфосфокиназный (алактатный) механизм, обеспечивающий ресинтез АТФ за счет перефосфорилирования между креатинфосфатом и АДФ;
- гликолитический (лактатный) механизм, обеспечивающий ресинтез АТФ в процессе анаэробного расщепления гликогена мышц или глюкозы крови с образованием молочной кислоты;
- миокиназный механизм, осуществляющий ресинтез АТФ за счет реакции перефосфорилирования между двумя АДФ с участием миокиназы (аденилаткиназы).

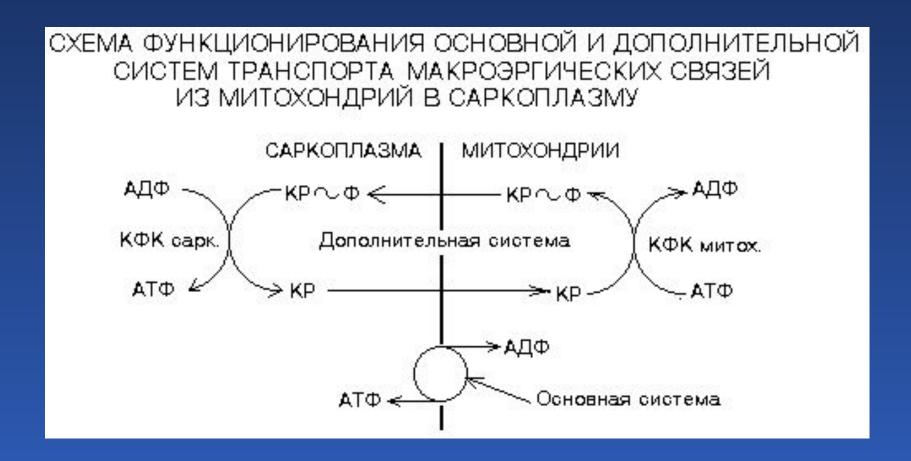
Общий КПД при преобразовании энергии метаболических процессов в механическую работу (Ем) зависит от двух показателей:


- эффективности преобразования выделяемой в ходе метаболических превращений энергии в энергию ресинтезируемых АТФ, т. е. эффективности фосфорилирования (Еф);
- эффективности преобразования АТФ в механическую работу, т. е. эффективности электромеханического сопряжения (Ee);

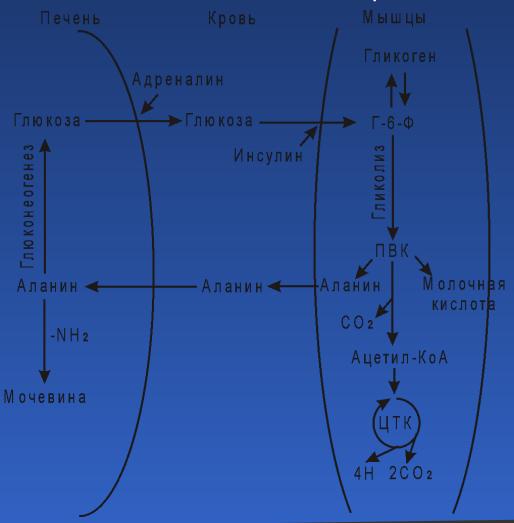
 $Ем = (Еф/Ее) \cdot 100$

Критерии оценки механизма энергообеспечения мышечной деятельности


Механизм ресинтеза АТР	Мах мощность		Время	Мах емкость		Эффективность, %		
	Дж/ кг в мин	Моль в мин	удержания max мощности, с	Кдж/кг	Моль/ кг	Еф	Ee	Ем
КФК	3770	3,6	6–12	630	0,7	80	50	40
Гликолиз	2500	1,6	30–60	1050	1,2	36–5 2	50	22
Аэробный	1250	1,0	600	8	90	60	50	30


Изменение скорости энергопоставляющих процессов в работающих мышцах в зависимости от продолжительности упражнения

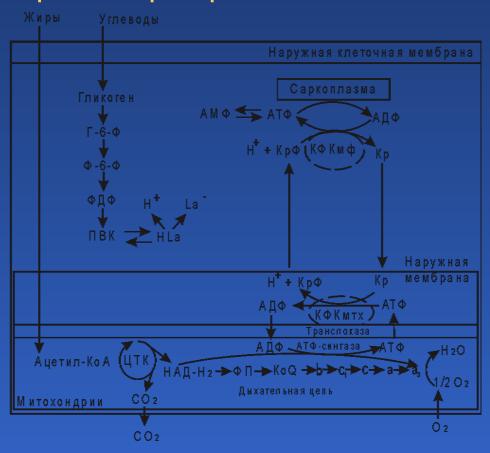
Креатинфосфокиназный механизм ресинтеза АТФ


Креатинфосфат + АДФ = АТФ + Креатин

Гликолитический механизм ресинтеза АТФ

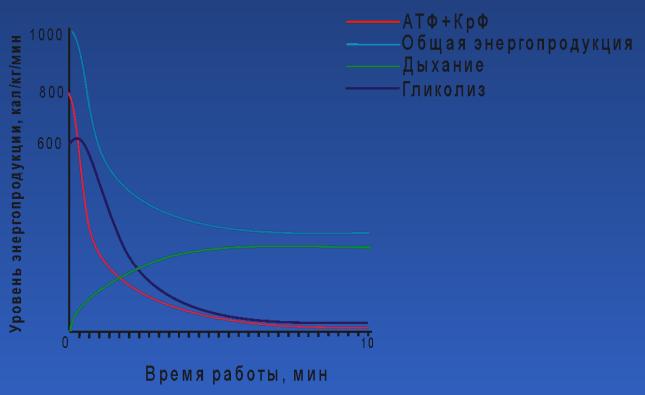
Активация глюкозо-аланинового цикла при мышечной работе

Миокиназный механизм ресинтеза АТФ


$$2AД\Phi \rightarrow AT\Phi + AM\Phi$$

Аэробный механизм ресинтеза АТФ

Скорость образования АТФ в процессе окислительного фосфорилирования зависит от:


- соотношения АТФ/АДФ, при отсутствии АДФ синтез АТФ не происходит;
- количества кислорода и эффективности его использования;
- активности окислительных ферментов;
- целостности мембран митохондрий;
- количества митохондрий;
- концентрации гормонов, ионов кальция и других регуляторов.

Энергетическое обеспечение мышечной деятельности Взаимосвязь анаэробных и аэробных превращений в скелетных мышцах: энерго-транспортный «челнок» с участием миофибриллярных и митохондриальных изоферментов креатинфосфокиназы

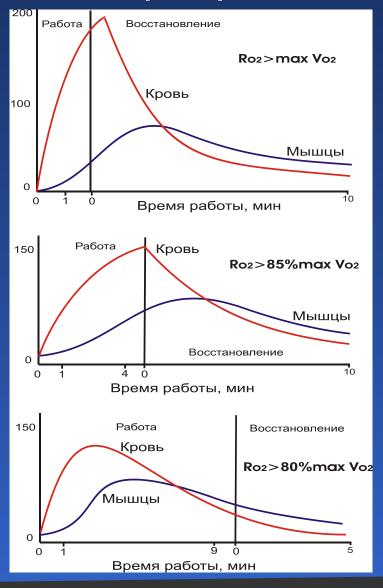
Соотношение анаэробных и аэробных механизмов ресинтеза АТФ при мышечной нагрузке

Изменения скорости анаэробного и аэробного образования энергии в зависимости от предельного времени упражнения.

Энергетическое обеспечение мышечной деятельности

Биохимические факторы спортивной работоспособности

Факторы, лимитирующие физическую работоспособность человека:


- биоэнергетические (аэробные или анаэробные) возможности человека;
- нейромышечные (мышечная сила и техника выполнения упражнения);
- психологическая мотивация (мотивация и тактика ведения спортивного состязания).

Энергетическое обеспечение мышечной деятельности

Основные особенности человека, определяющие его физическую работоспособность

- Алактатная анаэробная способность, связанная процессами анаэробного ресинтеза АТР и КФ в работающей мышце
- Гликолитическая анаэробная способность, отражающая возможность усиления при работе анаэробного гликолитического процесса, в ходе которого происходит накопление лактата
- Аэробная способность, связанная с возможностью выполнения работы за счет усиления аэробных процессов в тканях при одновременном увеличении доставки и утилизации кислорода

3.3. Биохимические изменения в организме при работе различного характера. Биохимические изменения при утомлении. Общие изменения в организме при физической нагрузке

Накопление молочной кислоты в мышцах и крови при работе разной мощности и продолжительности

При переходе от состояния покоя к интенсивной мышечной деятельности происходят следующие процессы:

- анаэробные механизмы ресинтеза АТФ;
- использование креатинфосфата;
- гликолиз.

Далее изменения метаболизма зависят от интенсивности мышечной работы:

- работа в "аэробной зоне";
- работа в "смешанной зоне";
- кислородная задолженность.

Специализация мышц по типу энергетического обеспечения

- Красные мышцы "медленные", оксидативные.
- Белые мышцы "быстрые", гликолитические.

Систематизация упражнений по характеру биохимических изменений при физической работе

В зависимости от количества мышц, участвующих в работе, ее делят на:

- •локальную (менее ¼ всех мышц тела);
- региональную;
- глобальную (более ¾ всех мышц тела).

Режимы работы мышц:

- статический (изометрический) происходит пережимание капилляров, велика доля участия анаэробных реакций;
- динамический (изотонический) обеспечивается гораздо лучшее кровоснабжение тканей кислородом.

Зависимость биохимических процессов от мощности выполняемой мышечной работы

Уровни мощности работы:

- критический максимальное потребление кислорода;
- порог анаэробного обмена усиление анаэробных реакций;
- мощность истощения наивысшее развитие гликолиза;
- максимальная анаэробная мощность предельных значений достигает скорость образования энергии в креатинфосфокиназной реакции.

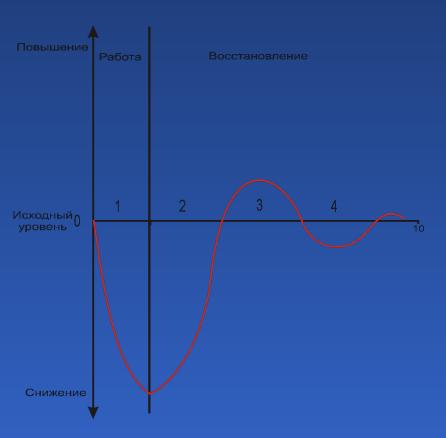
Зоны относительной мощности по классификации В. С. Фарфеля:

- максимальная обеспечение энергией за счет АТФ и креатинфосфата, частично за счет гликолиза;
- субмаксимальная обеспечение энергией за счет анаэробного гликолиза;
- большая аэробные источники энергии;
- умеренная аэробные источники энергии.

Первопричины утомления

- снижение энергетических ресурсов;
- уменьшение активности ключевых ферментов изза угнетающего действия продуктов метаболизма тканей;
- нарушение целостности функционирующих структур из- за недостаточности их пластического обеспечения;
- изменение нервной и гормональной регуляции и др.

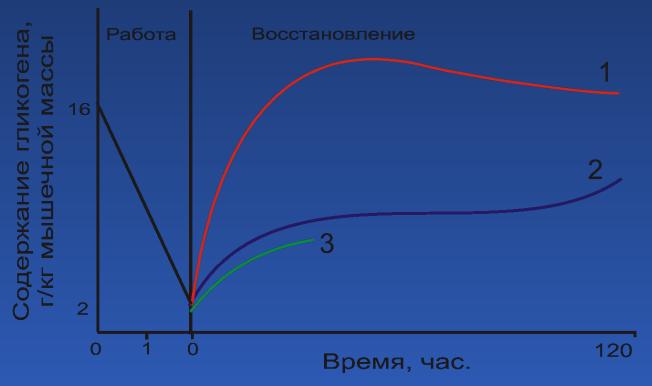
3.4. Биохимические превращения в период восстановления после мышечной работы.Срочное и отставленное восстановление


Биохимические превращения в период восстановления после мышечной работы

Время, необходимое для завершения восстановления различных биохимических процессов в период отдыха после напряженной мышечной работы

Процесс	Время восстановления
Восстановление О ₂ -запасов в организме	От 10 до 15 с
Восстановление алактатных анаэробных резервов в мышцах	От 2 до 5 мин
Оплата алактатного О ₂ -долга	От 3 до 5 мин
Устранение молочной кислоты	От 0,5 до 1,5 ч
Оплата лактатного О ₂ -долга	От 0,5 до 1,5 ч
Ресинтез внутриклеточных запасов гликогена	От 12 до 48 ч
Восстановление запасов гликогена в печени	От 12 до 48 ч
Усиление индуктивного синтеза структурных и ферментных белков	От 12 до 72 ч

Биохимические превращения в период восстановления после мышечной работы


Явление суперкомпенсации при восстановлении энергетических ресурсов в период отдыха после истощающей работы

- 1 фаза истощения;
- 2 фаза восстановления;
- 3 фаза сверхвосстановления;
- 4 фаза упроченного состояния

Биохимические превращения в период восстановления после мышечной работы

Влияние приема углеводов с пищей на восстановление запасов гликогена в мышцах в период отдыха после работы



- 1 диета с высоким содержанием углеводов;
- 2 белково-жировая диета;
- 3 без пищи

3.5. Закономерности биохимической адаптации под влиянием систематической тренировки

Закономерности биохимической адаптации под влиянием систематической тренировки

Взаимосвязь отдельных звеньев срочной и долговременной адаптации

Закономерности биохимической адаптации под влиянием систематической тренировки

Принципы тренировок на основе закономерностей биологической адаптации:

- сверхотягощение;
- специфичность;
- обратимость действия;
- положительное взаимодействие;
- последовательная адаптация;
- цикличность.

Закономерности биохимической адаптации под влиянием систематической тренировки

Сверхотягощение

Развитие адаптации под воздействием тренировки обеспечивается:

- системой внутриклеточного энергетического обмена;
- гормональными симпато-адреналовой и гипофизарно-адренокортикальной системами.

3.6. Биохимический контроль при занятиях физической культурой и спортом. Биохимический контроль за развитием систем энергообеспечения организма и уровнем тренированности, утомления и восстановления организма

Биохимический контроль при занятиях физической культурой и спортом

О более высоком уровне тренированности свидетельствуют

меньшее накопление лактата (по сравнению с нетренированными) при выполнении стандартной нагрузки, что связано с увеличением доли аэробных механизмов;

большее накопление лактата при выполнении предельной нагрузки, что связано с увеличением гликолитической мощности;

повышение мощности работы, при которой резко возрастает уровень лактата у тренированных лиц по сравнению с нетренированными;

более длительная работа на предельном уровне; меньшее возрастание лактата при повышении мощности работы (совершенствование анаэробных процессов и экономичность энергозатрат);

увеличение скорости утилизации лактата в период восстановления после физической нагрузки.

Биохимический контроль при занятиях физической культурой и спортом

Контроль за применением допинга в спорте

Регулярное применение допингов вызывает нарушение функции многих систем:

- сердечно-сосудистой;
- эндокринной, в особенности половых желез (атрофия) и гипофиза, что приводит к нарушению детородной функции, появлению мужских вторичных признаков у женщин (вирилизация) и увеличению молочных желез у мужчин (гинекомастия);
- функционирования печени, вызывая желтуху, отеки, циррозы;
- иммунной, что приводит к частым простудам, вирусным заболеваниям;
- нервной, проявляющееся в виде психических расстройств (агрессивность, депрессия, бессонница);
- прекращение роста трубчатых костей, что опасно для растущего организма.

Биохимический контроль при занятиях физической культурой и спортом

Контроль за применением допинга в спорте

По фармакологическому действию допинги делятся на 5 классов:

- психостимуляторы (амфетамин, эфедрин, фенамин, кофеин, кокаин, и др.);
- наркотические средства (морфин, алкалоиды-опиаты, промедол, фентанил и др.);
- анаболические стероиды (тестостерон, его производные, метан-дростенолон, ретаболил, андродиол, и др), а также анаболические пептидные гормоны (соматотропин, гонадотропин, эритропоэтин);
- бета-блокаторы (анапримин, пропранолол, оксопреналол, надолол, атеналол и др.);
- диуретики (новурит, дихлотиазид, фуросимид (лазикс), клопамид, диакарб, верошпирон и др.).

3.7. Биохимические основы силы, быстроты и выносливости

- Морфологические и биохимические основы скоростно-силовых качеств
- Биохимические основы методов скоростно-силовой подготовки спортсменов
- Биохимические основы выносливости
- Методы тренировки, способствующие развитию выносливости

3.8. Биохимическое обоснование методики занятий физической культурой и спортом с лицами разного возраста. Биохимические основы рационального питания при занятиях физической культурой Биохимическое обоснование методики занятий физической культурой и спортом с лицами разного возраста. Биохимические основы рационального питания при занятиях физической культурой

Биохимические основы рационального питания спортсменов

Основными химическими компонентами пищи являются 6 групп веществ:

- поставщики энергии (углеводы, белки, жиры);
- незаменимые аминокислоты;
- незаменимые жирные кислоты;
- витамины;
- минеральные вещества;
- вода.

Биохимическое обоснование методики занятий физической культурой и спортом с лицами разного возраста. Биохимические основы рационального питания при занятиях физической культурой

Пищевые добавки способствуют:

- увеличению мышечной массы;
- коррекции компонентного состава тела (уменьшение жирового компонента, увеличение мышечного и костного);
- увеличению скорости метаболизма и энергообразования;
- восстановлению электролитического баланса;
- активации регуляторных механизмов энергообмена;
- снижению массы тела и др.

Графики взяты из книги:

Биохимия: учеб. для институтов физической культуры / ред. В. В. Меньшикова, Н. И. Волкова. – М.: Физкультура и спорт, 1986.

Основной библиографический список

- 1. Биохимия : учеб. для институтов физической культуры / ред. В. В. Меньшикова, Н. И. Волкова. М. : Физкультура и спорт, 1986.
- 2. Биохимия. Краткий курс с упражнениями и задачами / ред. Е. С. Северина, А. Я. Николаева. – М. : ГЭОТАР-МЕД, 2001.
- 3. Волков, Н. И. Биохимия мышечной деятельности / Н. И. Волков. М.: Олимпийский спорт, 2001.
- 4. Николаев, А. Я. Биологическая химия / А. Я. Николаев. М. : Высш. шк., 1989.
- 5. Лабораторный практикум по биохимии для студентов факультета физической культуры и спорта. СФУ, 2007.
- 6. Лекции по биохимии для студентов факультета физической культуры и спорта. СФУ, 2007.
- 7. Учебно-методические указания для самостоятельной работы студентов факультета физической культуры и спорта. – СФУ, 2007.
- 8. Электронный лабораторный практикум для студентов факультета физической культуры и спорта. СФУ, 2007.

Дополнительный библиографический список

- 1. Березов, Т. Т. Биологическая химия / Т. Т. Березов, Б. Ф. Коровкин. М. : Медицина, 1998.
- 2. Мусил, Я. Современная биохимия в схемах / Я. Мусил, О. Новакова, К. Кунц. – М. : Мир, 1984.
- 3. Пустовалова, Л. М. Практикум по биохимии / Л. М. Пустовалова. Ростов-н/Дону: Феникс, 1999.
- 4. Филлипович, Ю. Б. Основы биохимии / Ю. Б. Филлипович. М. : Агар, 1999.
- 5. Молекулярная биология клетки: в 3 тт. 2-е изд. М. : Мир, 1994.