

Bench Screening of Novel Anti-Wear Alternatives to ZDDP

Victor Bakunin, Trade and Technical representative, CIS Moscow, Russia **Cyril Migdal,** Director, Petrochemical Additives Middlebury, CT, USA

CHEMTURA – a new brand at the Oils and Additives market

The chemical company of the future

Chemistry+Future

Chemuitsty +Fu fl-±e

Gemi+sty A•°≥+Ft/ß ff--±e

Cemi+&•°≥+il/ß (e+

Ceß°mt≥÷Aur

Gleentur JuCoo

Chemtura

Our Additives Trademarks

- Naugalube® and Naugard® antioxidants;
- Calcinate[™], Hystrene[®] and Industrene[®] anti-wear agents;
- Lobase®, Hybase® and Petronate® sulfonate detergents;
- Synton® high-viscosity polyalphaolefins (PAO);
- G-2000[™] high-quality lubricants;
- Durad® additives based on organic phosphates;
- Reolube® non-combustible lubricants and fluids (phosphates);
- Reomol® and KP-140® special additives (phosphates);
- ANDEROL®, AOSyn®, PQ® special lubricants;
- Hatcol® esters and ester lubricants (ready-to-use and basestocks); Royco® aircraft lubricants.

Ужесточение экологических требований

Zinc dialkyldithiophosphate (ZDDP) - more than simply anti-wear protection

- •Zinc is the base for the formation of tribolayers (Zinc Polyphosphate)
- •ZDDP is an antioxidant
- •ZDDP is a synergist for Mo-containing additives

Effect of CHP on anti-wear properties of engine lubricants (four-ball test ^{Chemtura} machine)

Effect of CHP on anti-wear properties of engine lubricants (Cameron-Plint)

Chemtura

Ashless P-containing additives

Òðèàðèëòèî ô î ñô àòû

Ôî ñô èòû (í åò S)

Ôî ñô àòû àì ì î í èÿ (í åò S)

Phosphorus-free additives (All contain sulfur - SOx, sulfate ash)

$$\begin{array}{c} S & S \\ R_2 N - C - S - S - C - N R_2 \end{array}$$

Òèóðàì äèñóëüô èäû

Ñóëüô åí àì èäû

$$R_2N-C-S M^{\oplus}$$

Äèòèî êàðáàì àòû (çî ëüí û å)

Òèàäèàçî ëû

Î ñåðí åí í û å î ëåô èí û

Î ñåðí åí í û å ñë. ýô èðû

New anti-wear additives

Cyclic thiourea

Imidazolidine thion

Imidazolidine thion

Oxamide

Hydrazide of succinic acid

Silicon-containing compounds: Silanes/Siloxanes

Octyltriethoxysilane

Bis-(triethoxysilyl) ethane

Bis-(truethoxysilyl) propyl disulfide

Anti-wear properties of engine lubricants containing silanes (Cameron-Plint)

Anti-wear additives based on esters

•MLA-2837

– Ashless, no S & P

- Synergism with ZDDP

- Free-flowing clear liquid

- Non-corrosive

Sulfur-containing anti-wear additives

MLA-2877

- Thiocarbamate derivative
- 12 % S
- Free-flowing yellow liquid
- Non-corrosive

MLA-2871

- S-containing heterocycle
- Synergism with ZDDP
- 22 % S
- Free-flowing yellow liquid
- Non-corrosive

Four-ball friction machine

1 additives weight % (or as stated)

Cameron-Plint tribometer

(or as stated)

Selection criteria

Use conditions

Activation temperature/ pressure
Price/Quality
Corrosive power
Volatility
Color
Solubility

Compatibility with sealants Smell Physical condition Toxicity Compatibility with packaging Duration of action Multifunctionality • AO; AF; contribution to EP

As an anti-wear catalytic agent, CHP reliably distinguishes among lubricants with respect to anti-wear qualities in tests on a four-ball friction machine and the Cameron-Plint tribometer.

By screening various compounds, it was possible to identify several quality classes of potential anti-wear additives for engine lubricants as replacements for zinc dialkyldithiophosphate:

- Heterocycles with Sulfur/Nitrogen atoms
- Esters with Nitrogen atoms (CHON)
- Silanes/Siloxanes