

Модуль 1

Проведении энергетических обследований

Лекции 1-4

Актуальность энергосбережения:

- недостаточная обеспеченность материальными ресурсами (в частности, энергоресурсами) сдерживает рост производства;
- высокая энергоемкость производства плюс удорожание энергии снижают конкурентоспособность товаров по цене, провоцируют спад объемов производства;
- перебои в энергоснабжении, вызванные задолженностью энергоснабжающим организациям, стали частым явлением нашей жизни;
- ухудшение экологической обстановки, вызванное добычей энергии, требует немедленного принятия соответствующих решений;
- неэффективное распределение энергоресурсов (бюджетные организации, бытовые потребители используют значительное количество энергии при неполной оплате) дает серьезную нагрузку на бюджеты регионов.

Основное направление энергосбережения:

- создание технологической базы, т. е.разработка, поиск и внедрение энергосберегающих
- технологий,
- реализация демонстрационных проектов высокой эффективности,
- внедрение технологий использования альтернативных источников энергии,
- уменьшение парка энергоемкого, физически и морально устаревшего
- оборудования,
- повышение эффективности использования сырьевых и топливно-энергетических ресурсов
- за счет внедрения новых экологически чистых технологий
- переход на природный газ.

Согласование интересов участников энергосбережения

1. Интерес производителя: повышение выручки при ограничении потребителя по нагрузке, введении лимитов. Выручка повышается за счет наложения штрафов за превышение лимитов.

Интерес потребителя: отсутствует. У потребителя появляется стимул для внедрения энергосберегающих технологий. *Интересы не совпадают*.

2. Интерес производителя: повышение рентабельности за счет экономии издержек при внедрении энергосберегающих технологий (увеличение КПД генерирующих мощностей, снижение потерь в сетях и т. п.).

Интерес потребителя: повышение рентабельности в случае снижения тарифов на энергоресурсы в условиях естественного прироста потребления. Стимул для инвестирования в энергосбережение явно выражен только у производителя. *Совпадение интересов неполное, косвенное.*

3. Интерес производителя: весьма вероятно увеличение тарифной выручки в случае инвестирования производителем в энергосберегающие технологии в условиях прироста потребления энергоресурсов потребителем. Затраты на энергосберегающие мероприятия, как правило, существенно ниже, чем затраты на производство такого же количества электроэнергии.

Интерес потребителя: экономия инвестиционных ресурсов на энергосбережении, возможность инвестирования в новые производственные мощности и, как следствие, увеличение потребления энергоресурсов. *Совпадение интересов сторон*.

4. Интерес производителя: при ограниченном росте или отсутствии роста потребления энергоресурсов вероятно снижение тарифной выручки. Производитель вынужден проводить собственные энергосберегающие мероприятия.

Интерес потребителя: увеличение рентабельности при внедрении энергосберегающих технологий. *Совпадение интересов отсутствует.*

Основные нормативно-технические и справочные документы:

- Федеральный закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» от 23.11.2009 г.
- Приказ №182 от 19.04.10 Министерства энергетики РФ «Об утверждении требований энергетическому паспорту».
- Правила разработки отчетной документации по результатам энергетического обследования (НП «БалтЭнергоЭффект», Протокол № 08-СП/Э/10 от 31 августа 2010 г.)
- Методические указания по обследованию энергопотребляющих объектов. М. МЭИ. 1996 г.
- «Правила проведения энергетических обследований организаций» (утверждены Минтопэнерго России 25.03.98 г.).
- МГСН 2.01.99. Энергосбережение в зданиях.
- СНиП 23-02-2003. Тепловая защита зданий.
- ГОСТ 26629-85 «Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций».
- ГОСТ 26254-84. «Метод определения сопротивления теплопередаче ограждающих конструкций».
- ГОСТ Р 51387-99 "Энергосбережение. Нормативно-методическое обеспечение. Основные положения".
- ГОСТ Р 51541-99 "Энергосбережение. Энергетическая эффективность. Основные положения".
- ГОСТ Р 51379-99 «Энергосбережение. Энергетический паспорт промышленного потребителя топливно-энергетических ресурсов. Основные положения. Типовые формы».

Сведения об измерительной аппаратуре

Наименование средств измерений (кол-во)	Тип	Предел измерений	Погре шность нзмерення	Дата следующей поверки
1	2	3	4	8
Люксметр + Яркомер	ТКА-ПКМ 02	от 10 до 200 000 лк	±3,0	25.11.2011
Расходомер ультразвуковой	Акрон 01	Q - 0-400, м ³ /ч Dy от 40 до <u>2000 мм</u> температуре от - 10 до +150 °C	± 1,5 %	21.04.12
Анализатор	FLUKE- 435/001	0600 <u>B</u> 0100 <u>A</u>	± 0,1 % ± 0,2 %	02.01.2012
Тепловизор	FLIR P660	Чувствительность <45 мК	±1% или 1 <u>°C</u>	09.12.2011
Лазерный дальномер	Bosch DLE 50	0,05-50. M	±1,5 mm/m	24.10.2012

При измерении необходимо соблюдать следующие требования:

- на фотоэлемент не должна падать тень от человека, производящего измерения освещенности; если рабочее место затеняется в процессе работы самим человеком или выступающими частями оборудования, то освещенность следует измерять в этих реальных условиях;
- вблизи измерителя не должно быть крупных ферромагнитных масс и магнитных полей;
- при измерении освещенности от источников света (или светильников), расположенных под небольшими углами к плоскости фотоэлемента (менее 30°), возможно возникновение существенных ошибок.
- ежегодно производить градуировку фотоэлектрического люксметра, т.к. со временем наблюдается старение его интегральной чувствительности.

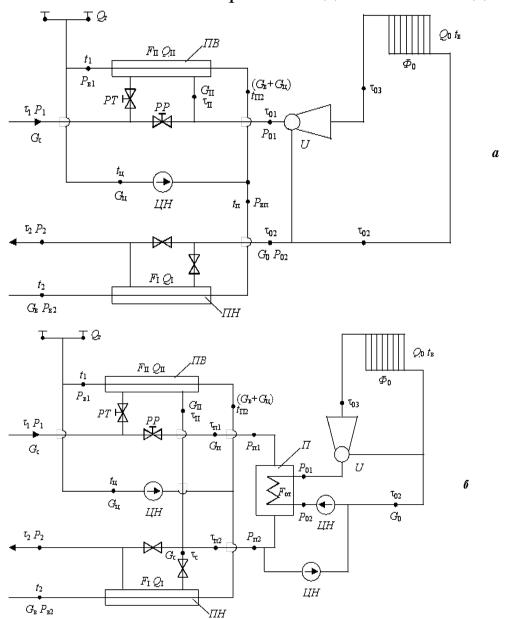
Система освещения общественных зданий.

КЕО - коэффициент естественной освещенности

$$KEO = \frac{E_{\text{внутр}}}{E_{\text{наруж}}} \cdot 100$$

где Eвнутр — измеренная средняя освещенность внутри помещения, лк; Eнаруж — измеренная наружная освещенность, лк.

Системы отопления, горячего водоснабжения, вентиляции и кондиционирования


Погрешность измерения не должна превышать:

- 1) для расходов 2,5 %;
- 2) для давлений -0,1 кгс/см2;
- 3) для температур -0.1°C.

Измерение расходов: расходомеры «Portaflow» (Англия), «Sonoflo» и «Sonocal» (Дания) и др., имеющие аттестацию Госстандарта РФ.

Измерение температуры: ртутные термометры с ценой деления 0,1°C.

Системы отопления и горячего водоснабжения здания

Измерения в системах отопления:

- 1) расходы сетевой воды и воды в квартальной сети при независимой схеме;
- 2) температура сетевой воды и в квартальной сети;
- 3) средняя температура воздуха в отапливаемых помещениях;
- 4) давление сетевой воды и в квартальной сети при независимой схеме.

Измерения в системах вентиляции и кондиционирования:

- коэффициенты загрузки kзф и включения kвф вентиляторов;
- время работы вентустановок в течение суток tрф,
- \blacksquare температуру воздуха внутри помещения tвн,
- среднюю температуру наружного воздуха tнв,
- кратность воздухообмена m.

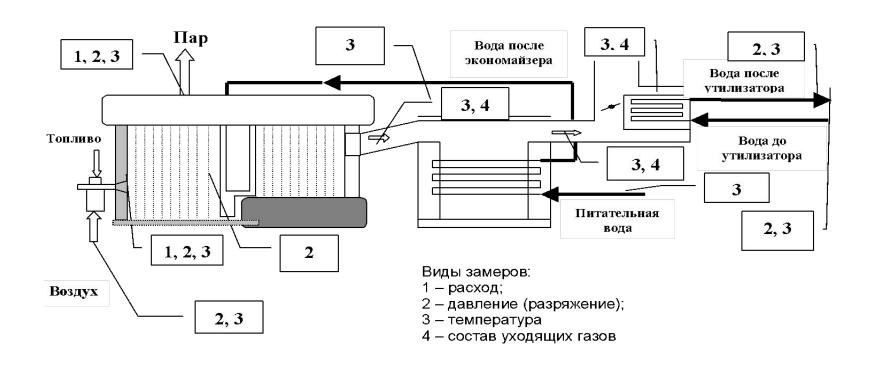
Котельные

Для определения режима работы котла контролируются следующие параметры:

- 1. Температура воды, °С:
- а) питательной перед котлом;
- б) питательной перед экономайзером;
- в) на входе в теплоутилизатор;
- г) на выходе из теплоутилизатора.
- 2. Расход воды через теплоутилизатор, т/ч.
- 3. Температура продуктов сгорания, °С:
- а) за котлом;
- б) за экономайзером;
- в) за теплоутилизатором.
- 4. Состав продуктов сгорания за котлом, за экономайзером,

за теплоутилизатором: содержание CO2, O2, CO, NOx (%).

- 5. Коэффициент избытка воздуха, о.е.:
- а) за котлом;
- б) за экономайзером;
- в) за теплоутилизатором.


Перечень приборов

№	Измеряемый параметр	Наименование прибора, тип
1	O ₂ , CO ₂ , CO, NO ₂ , NO ₂ , SO ₂ , коэффициент избытка воздуха	Анализатор горения электронный КМ 9006 "Quintox"
2	Расход жидкостей с температурой до 200°C	Ультразвуковой расходомер жидкости "Portaflow 300"
3	Измерение толщины стенок металлических труб	Ультразвуковой толициномер "SONAGAGE"
4	Измерение температуры поверхностей	Термометр инфракрасный бесконтактный "Raytek Rayst ST60"

Допустимая погрешность измерений

№	Вид измерений	Измеряемые физические величины	Обеспечиваемые предельные значения	
			диапазон измерений	погрешност
1	Измерения расхода	Скорость потока жидкости Скорость потока воздуха	(010) m/g (030) m/g	< ±3% < ±3%
2	Измерения температуры	Температура	-1991300 <u>°C</u>	< ±1°C
3	Измерения состава и свойств веществ	Концентрация отходящих газов топивьопотребляющих установок: - окись углерода (СО) - двуокись углерода (СО2) - окись азота (NO) - двуокись азота (NO2) - двуокись серы (SO2) - киспород (О2) - углеводороды (Сх Ну)	10010000 ppm 0,320% 255000 ppm 501000 ppm 255000 ppm 0,2525% 0,255% (по метану)	±10% ±1,5% ±5% ±5% ±5% ±1% ±5%
		Состав производственной воды: - Ph - жесткость - содержание железа - нефтепродукты	0,0114 pH 0,014,7 мг/л 10400 мкг/л 0,00550 мг/л	±0,01 pH ±0,01 мг/л ±10 мкг/л ±40%
4	Эпектрические измерения	Параметры электрических сетей	< 2000.A < 750.B < 1200 кВ·А 4565Гц	< 1,5% < 1% < 2,5% < 1%

Схема замеров, проводимых во время теплотехнических испытаний котлоагрегатов

- Требования по выору и определению показателей энергетической эффективности
- Показатели энергосбережения используют при:
- планировании и оценке эффективности работ по энергосбережению;
- проведении энергетических обследований (энергетического аудита) потребителей энергоресурсов;
- формировании статистической отчетности по эффективности энергоиспользования.

основные показатели энергетической эффективности:

- экономичность потребления ТЭР (для продукции при ее использовании по прямому функциональному назначению);
- энергетическая эффективность передачи (хранения) ТЭР (для продукции и процессов);
- энергоемкость производства продукции (для процессов). Показатели экономичности энергопотребления и энергетической эффективности передачи (хранения) ТЭР:
- устанавливают в нормативных документах по стандартизации на продукцию в виде нормативных значений, определяемых в регламентированных условиях;
- вводят в техническую (проектную, конструкторскую, технологическую, эксплуатационную) документацию на продукцию в виде:
- нормативов потерь (расхода) энергии (энергоносителей), определяемых в регламентированных условиях использования продукции;
- норм потерь (расхода) энергетических ресурсов (энергоносителей) для конкретных условий использования продукции (реализации технологического процесса).

Выбор номенклатуры и значений показателей экономичности энергопотребления

- <u>Пример.</u> В качестве показателя экономичности энергопотребления для автомобиля выбирают расход топлива на перевозку 1 т груза на 1 км пути, т.е. расход топлива на единицу работы.
- <u>Пример.</u> В качестве показателя экономичности энергопотребления для насосов выбирают КПД, т. е. отношение полезной мощности насоса к мощности на приводном валу.
- <u>Пример.</u> Для бытовых холодильников в качестве показателя экономичности энергопотребления может быть принят расход электроэнергии за 1 сут., который необходим для поддержания средней температуры в холодильной камере (например, минус 5 °C), температуры в низкотемпературном отделении (например, минус 16 °C) при определенной температуре окружающей среды (окружающего воздуха, например, 25 °C).

В нормативной документации на изделия, потребляющие одновременно различные виды топлива/энергии или топлива и энергии, должны устанавливаться показатели экономичности энергопотребления:

- по каждому виду топлива отдельно;
- по всем видам топлива в сумме в пересчете на условное топливо;
- - по каждому виду энергии отдельно;
- - по всем видам энергии в сумме в пересчете к одному виду единиц измерения.

Выбор номенклатуры и значений показателей эффективности передачи энергии

- В качестве характерных параметров используют:
- расстояние, на которое передают энергию (энергоноситель);
- исходный энергетический потенциал (исходные параметры энергоносителя);
- размерные характеристики канала передачи энергии.
 - В качестве регламентированных условий указывают:
 - исходный энергетический потенциал (на входе в систему);
 - описание условий работы системы (вид энергоносителя, номинальные параметры энергоносителя, условия окружающей среды и др.);
- 📫 характеристики потребителя энергии.
 - Нормативные показатели эффективности передачи энергии устанавливают в форме:
 - числовых значений и таблиц числовых значений;
 - графических зависимостей потерь энергии в функции характерных параметров системы;
 - аналитических зависимостей.

Выбор номенклатуры и значений показателей энергоемкости

- Показатели энергоемкости изготовления продукции (изделия):
- по всем видам топлива в сумме в пересчете на условное топливо;
- по всем видам энергии в сумме в пересчете к одному виду единиц измерения;
- суммарная энергоемкость по всем видам ТЭР в сумме в пересчете на условное топливо.
- В качестве технических условий могут выступать:
- а) описание конструктивных технологических особенностей и характеристик изделия;
- б) описание особенностей и характеристик основного и вспомогательного технологических процессов на данном предприятии, включающее:
- описание последовательности и режимов технологических операций по всем составным элементам, единицам и изделию в целом;
- характеристики исходного сырья, материалов, влияющие на затраты ресурсов топлива и энергии при их использовании и переработке на данном предприятии;
- характеристики деталей, заготовок, комплектующих изделий, влияющие на энергозатраты при их последующей обработке и использовании в процессе изготовления конечной продукции;
- характеристики основного оборудования (показатели его экономичности в отношении затрат топлива и энергии при эксплуатации), участвующего в технологических процессах основного и вспомогательного циклов, включая затраты топлива и энергии на подготовку технологической оснастки и инструмента;
- в) характеристика и структура технологических потерь топлива и энергии в технологическом процессе для нормальных условий производства продукции на данном предприятии.

Методы расчета потерь энергоносителей в образовательных учреждениях

Расчет потерь энергоносителей проводился на основании:

- СНиП 23-02-2003 «Тепловая защита зданий»,
- СНиП 23-01-99 «Строительная климатология»,
- СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование»,
- ГОСТ 25380-82 «Здания и сооружения. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции»,
- ГОСТ 26254-84 «Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций»

В расчетах приняты следующие обозначения и нормированные показатели:

- q Удельный расход тепловой энергии (кДж/м $2\cdot$ оСсут)
- *Q* Расход тепловой энергии (МДж)
- A Площадь (м2)
- *V* Объем (м3)
- *zht* –Продолжительность отопительного сезона (сут.)
- D Градусосутки (для Приморского края оС \cdot сут)
- text Температура наружного воздуха расчетная (оС)
- tin Температура воздуха внутри помещений (C)
- tht Средняя температура наружного воздуха за отопительный период, (оС)
- R Приведенное сопротивление теплопередаче (м2·оС/Вт)
- K Коэффициент теплопередачи (Вт/ м2·оС).

Приведенный трансмиссионный коэффициент теплопередачи здания

$$K_{m}^{tr} = \frac{b \times (\frac{A_{w}}{R_{w}^{r}} + \frac{A_{F}}{R_{F}^{r}} + \frac{A_{ed}}{R_{ed}^{r}} + n \times \frac{A_{c1}}{R_{c1}^{r}} + n \times \frac{A_{f}}{R_{f}^{r}})}{A_{e}^{sum}}$$

b – коэффициент, учитывающий дополнительные теплопотери, связанные с ориентацией ограждений по сторонам горизонта принимается равным 1,1;

Aw – площадь поверхности стен, м2;

Rwr – приведенное сопротивление теплопередаче стен, расчетное значение, м $2 \cdot oC/BT$;

AF – площадь поверхности светопрозрачных конструкций, м2;

RFr — приведенное сопротивление теплопередаче светопрозрачных конструкций, расчетное значение, м $2 \cdot oC/Bt$

Aed – площадь поверхности наружных дверей, м2

 $Red\ r$ — приведенное сопротивление теплопередаче наружных дверей, расчетное значение, м2·оC/BT;

n — коэффициент, принимаемый в зависимости от положения ограждающей конструкции по отношению к наружному воздуху;

Ac1- площадь поверхности чердачных перекрытий 1180,1 м2

Rc1r- приведенное сопротивление теплопередаче чердачных перекрытий, расчетное значение, м2* оС/Вт

Af – площадь поверхности цокольных перекрытий, м2

Rfr — приведенное сопротивление теплопередаче цокольных перекрытий, расчетное значение, м2* оС/Вт

Aesum – общая площадь наружных ограждающих конструкций, м2

• Приведенный инфильтрационный коэффициент теплопередачи здания

$$K_{m}^{inf} = \frac{0.28 \times c \times n_{a} \times \beta_{v} \times V_{h} \times \rho_{a}^{ht} \times k}{A_{e}^{sum}}$$

c — удельная теплоемкость воздуха, кДж/(кг·оС)

па – средняя кратность воздухообмена здания за отопительный период согласно ТСН 23-301-2004;

 βv — коэффициент, учитывающий снижение объема воздуха из-за наличия внутренних ограждающих конструкций, при отсутствии данных принимается;

Vh – отапливаемый объем, м3;

 ρaht — средняя плотность воздуха за отопительный период;

k – коэффициент, учитывающий влияние встречного теплового потока.

• Общий коэффициент теплопередачи здания равен:

$$K_m = K_m^{tr} + K_m^{inf}$$

Потребность в тепловой энергии в течение отопительного периода

$$Q_h^y = ((Q_h - Q_s - Q_{int})n\zeta) \times bhl$$

- ζ коэффициент эффективности авторегулирования подачи теплоты в системах отопления; рекомендуемые значения 0,5;
- n коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций; рекомендуемое значение 0.8;
- bhl нормативная потребность в тепловой энергии в течение отопительного периода 1,13.
- Общие теплопотери здания через ограждающие конструкции за отопительный сезон:

$$Q_h = 0.0864 \times K_m \times A_e^{sum} \times D$$

• Теплопоступления в здание от солнечной радиации за отопительный период:

$$Q_s = t_f \times k_f \times (A_{F1} \times I_1 + A_{F2} \times I_2 + A_{F3} \times I_3 + A_{F4} \times I_4) + t_{scy} \times k_{scy} \times A_{scy} \times I_{hor}$$

$$AF1 \quad AF2 \quad AF3 \quad AF4 \quad \text{Informally occupation of the proposed decays a property of the property of$$

AF1, AF2, AF3, AF4, - площадь остекления по сторонам фасада здания;

- I1, I2, I3, I4 средняя за отопительный период интенсивность солнечной радиации на вертикальную поверхность фасада здания, ориентированную по сторонам света (принимается по СНиП 23-01-99) tf учитывающий затенение светового проема 0,65;
- kf коэффициент относительного проникания солнечной радиации для светопропускающего заполнения окна 0,80.
- Бытовые теплопоступления:

$$Q_{int} = 0.0864 \times q_{int} \times z_{ht} \times A_{sum}$$