

Министерство образования и науки Российской Федерации

Научно-техническая политика Министерства образования и науки РФ в области энергетики и энергосбережения

Антропов А.П.

Указ Президента Российской Федерации от 4 июня 2008 г. N 889 «О некоторых мерах по повышению энергетической и экологической эффективности российской экономики»

Распоряжение Правительства Российской Федерации от 8 января 2009 г. N 1-р «Основные направления государственной политики в сфере повышения энергетической эффективности электроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года»

Энергетическая стратегия России на период до 2030 года.

Государственная программа энергосбережения и повышения энергетической эффективности на период до 2020 года

Комиссия при Президенте Российской Федерации по модернизации и технологическому развитию экономики России (рабочая группа по энергоэффективности)

Новая редакция Приоритетных направлений развития науки, технологий и техники Российской Федерации и Перечня критических технологий

Президиум Государственного совета Российской Федерации 2 июля 2009 года в г. Архангельск (поручения по итогам заседания)

Совет генеральных конструкторов высокотехнологичных отраслей при Председателе Правительства РФ (поручения по итогам заседания)

Энергетическая стратегия России на период до 2030 года

Этапы реализации

Формирование основ новой экономики

Преодоление кризисных явлений в экономике и энергетике, осуществление работ по развитию и обновлению основных производственных фондов и инфраструктуры энергетического сектора (в т. ч. по завершению наиболее важных из ранее начатых проектов)

Инвестиции и инновационное обновление

Широкое инновационное обновление отраслей топливно- энергетического комплекса

Инновационное развитие

Постепенный переход к энергетике будущего на принципиально иной технологической основе с опорой на высокоэффективное использование традиционных энергоресурсов и новых неуглеводородных источников энергии

Государственная программа энергосбережения и повышения энергетической эффективности на период до 2020 года

Задачи:

Снижение энергоемкости ВВП к 2015 г. – 7,4%;

Снижение энергоемкости ВВП к 2020 г. – 13,5%;

Экономия первичной энергии к 2015 г. – 300 млн.тут.

Экономия первичной энергии 2016 - 2020 гг. – 170 – 180 млн.тут. (ежегодно)

Обеспечение производства электроэнергии за счет использования ВИЭ – 4,5% от общего объема производства электроэнергии в 2020 г. (17,0 ГВт)

Государственная научно-техническая политика по разработке и внедрению энергоэффективных технологий

Федеральные целевые программы

Частно-государственное партнерство (технологические платформы)

Международное сотрудничество

Малый бизнес

Государственная научно-техническая политика по разработке и внедрению энергоэффективных технологий

ФЦНТП «Исследования и разработки по приоритетным направлениям развития науки и техники» на 2002-2006 годы

ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007 - 2013 годы»

«Энергетика и энергосбережение»

В 2007-2010 г.г. – 60 проектов с 1008,0 млн. руб. бюджетного финансирования

«Энергетика и энергосбережение»

• В 2011 г. - 210 проектов с объемом бюджетного финансирования 3 400,0 млн. руб.

Экологически чистые когенерационные энергоустановки для производства водорода и энергообеспечения автономных потребителей

Учреждение Российской академии наук Объединенный институт высоких температур РАН (ОИВТ РАН)

Результаты разработки:

- Разработана когенерационная энергоустановка мощностью 10 кВт(э) КЭУ-10 для энергообеспечения автономных потребителей.
- ✓ Разработан энерготехнологический комплекс производительностью 100 нм³/ч по водороду ЭТК-100 для энергообеспечения.

Разработанная энергоустановка обеспечивает:

- полную безотходность процесса и практически полную экологическая безопасность;
- получение оксида или гидроксида алюминия высоколиквидных товарных продуктов;
- простоту и дешевизну хранения и транспортировки алюминия.

Когенерационная энергоустановка КЭУ-10

Энерготехнологический комплекс ЭТК-100

Оборудование для снижения энергозатрат при трубопроводной транспортировке рабочих и технологических сред

ГОУ ВПО «Московский энергетический институт (технический университет)»

Установка для модификации поверхностей трубопроводов

Опытная партия элементов запорно-регулирующей арматуры с покрытием

Результаты разработки:

Разработана комплексная технология повышения износостойкости основного оборудования трубопроводных сетей на основе использования нанокомпозитных покрытий.

Создана установка формирования нанокомпозитных покрытий на функциональных поверхностях, а также установка для модификации поверхностей трубопроводов.

Разработанная технология обеспечивает:

- -снижение не менее чем на 30% гидравлического сопротивления при транспортировке рабочих и технологических средств;
- —увеличение в 2 раза общего ресурса трубопроводов и оборудования.

Опытные партии эксплуатируются на Астраханском газоконденсатном месторождении.

Проведены работы на КТС-18 и КТС-54 ОАО «МОЭК».

Автономные системы комбинированного производства тепловой и электрической энергии из непищевой растительной биомассы

Ассоциация «АСПЕКТ»

Результаты разработки:

- ✓Изготовлен базовый модуль автономной системы комбинированного тепло и электроснабжения малых хозяйственных объектов.
- ✓ Разработаны параметры для проектирования и промышленного выпуска типоряда компактных комплексных автономных систем, работающих на непищевом сырье естественной влажности. Разработка обеспечит:
- —получение 2-х полезных продуктов биогаза, используемого для получения электрической и тепловой энергии, высокоэффективного биоорганического удобрения;
- —выработку электрической и тепловой энергии с КПД выше 75%;
- —минимальные сроки окупаемости (om 1 до 3 лет)

Биореактор

Гибридные теплонасосные системы теплохладоснабжения (TCT) многоэтажных зданий

Тепловые насосы энергоэффективного дома в Москве

Теплообменник-утилизатор «сбросного» тепла вентвыбросов

ОАО «ИНСОЛАР-ЭНЕРГО»

Результаты разработки:

- ✓Разработаны основные элементы гибридной теплонасосной системы теплохладоснабжения (ТСТ) многоэтажных зданий.
- ✓Разработано программное обеспечение проектирования нового поколения гибридных ТСТ многоэтажных зданий
- ✓ Разработан «Технологический регламент проектирования и монтажа гибридных теплонасосных систем теплохладоснабжения многоэтажных зданий в условиях плотной городской застройки» Разработанное оборудование обеспечит:
- снижение выбросов в атмосферу на 66 %
- –сокращение затрат энергии на покрытие энергетических нагрузок в 2 раза

Элементы гибридной ТСТ установлены по адресам: г. Москва, ул.Анохина, д.62, ул.Винницкая, д.8.

Энергоэффективные светотехнические приборы для уличного освещения на основе источников света нового поколения

ОАО «Учебное научно-конструкторское предприятие Нижегородского государственного технического университета»

Результаты разработки:

- ✓Разработан унифицированный ряд светотехнических приборов (СП) для уличного освещения консольного, паркового и подвесного типа мощностью от 70 до 320 Вт с газоразрядными и светодиодными источниками света.
- ✔Создана станция управления с беспроводным каналом связи (ZigBee), включая программное обеспечение, силовые электронные коммутационные устройства и шкафы управления.
- ✓Организовано опытное производство, выпуск опытной партии продукции и проведена ее сертификация.
 Разработанные светотехнические приборы обеспечат:
- —снижение удельной стоимости одного лм (люмен) светового потока в 3-5 раз

Опытные образцы установлены в г.Саров Нижегородской области.

Образцы консольных светотехнических приборов

Электрофизические и сорбционно-мембранные комплексы для очистки энергетических, трансформаторных, транспортных масел и топлива

ФГУП «Государственный научный центр Российской Федерации – Физико-энергетический институт им. А.И. Лейпунского»

Результаты разработки:

✓ Создан комплекс фильтрационного оборудования на основе электрофизических и мембранно-сорбционных модулей для очистки энергетических, трансформаторных, транспортных масел и топлива применительно к предприятиям топливно-энергетического комплекса.

Разработанный комплекс обеспечивает:

- —увеличение срока эксплуатации энергетических масел до 25-30%;
- —снижение до 20% экономических затрат при эксплуатации оборудования объектов ТЭК;
- *—повышение ресурса работы системы очистки*

Система комплексной очистки установлена в центральном маслохозяйстве (ЦМХ) Смоленской АЭС (г. Десногорск).

Модуль сорбционной очистки энергетических масел

Комплексная система очистки энергетических масел

Энерготехнологический комплекс совместного производства электроэнергии и синтетического жидкого топлива (СЖТ) из природного газа

Учреждение Российской академии наук Объединенный институт высоких температур РАН (ОИВТ РАН)

Общий вид ЭТК

Результаты разработки:

Созданный энерготехнологический комплекс (на базе существующей в ОИВТ РАН газотурбинной установки ГТУ мощностью 1 МВт) обеспечит:

- еысокий коэффициент использования топлива (КИТ), достигающий 85-90%;
- снижение стоимости генерируемой энергии на 30-70% за счет реализации синтетического жидкого топлива (метанола) по стоимости его производства на современном крупном химкомбинате;
- ✓ получение экологически чистого энергокомплекса (дымовые газы после ГТУ практически не содержат токсичных оксидов азота).

Энергосберегающие светотехнические приборы для систем мачтового освещения на основе сверхмощных многокристальных светодиодов (Проект частно-государственного партнерства)

Образцы мачтового светильника

Инициатор: ОАО «РЖД»,

Исполнитель — ОАО «Светлана-Оптоэлектроника».

Результаты разработки:

В результате выполнения работы созданы энергосберегающие светотехнические приборы для систем мачтового освещения на основе сверхмощных многокристальных светодиодов, обеспечивающие:

-снижение в 2 раза энергопотребления (до 1 кВт); -увеличение срока службы светильника (не менее 50 000 ч вместо 9 000 ч);

-снижение эксплуатационных расходов на ремонт и замену светильников.

Разработки субъектов малого бизнеса

Устройство регулировки температуры для энергосберегающей системы индивидуального учета, распределения и потребления тепла и электроэнергии в зданиях и сооружениях

Внедрение разработки приведет к снижению энергозатрат на отопление зданий и сооружений на 15-20 %

Разработчик: ООО «ЭЛЕМ ИНФО»

Теплообменное оборудование для утилизации низкопотенциального тепла

Внедрение разработки обеспечивает утилизацию до 70% теплового потенциала сточных вод

Разработчик: Акционерная компания ИНСОЛАР

Светодиодные световые приборы для освещения помещений общественных, жилых и вспомогательных зданий

Внедрение разработки обеспечит сокращение потребления электроэнергии в 6 раз по сравнению со светильниками на лампах накаливания

Разработчик: ЗАО «Инженерные технологии»

Высокоточный электронный регулятор напряжения для систем освещения с дистанционным контролем и управлением

Внедрение разработанной продукции позволит сэкономить 15-20% электроэнергии в системах освещения

Разработчик: ООО «Софт-Про»

СПАСИБО ЗА ВНИМАНИЕ!

Антропов Алексей Петрович

Министерство Образования и науки Российской Федерации

Тел. +7 (495) 629-64-53

Факс: +7 (495) 629-93-21

E-mail: antropov-ap@mon.gov.ru