Нижегородский государственный университет им. Н.И.Лобачевского

Национальный исследовательский университет

ТЕМАТИКА: Разработка научной, методической и приборной базы для оценки работоспособности и надежности длительно эксплуатируемых магистральных газопроводов на основе определения уровня старения металла труб

Чувильдеев В.Н., проф., директор НОЦ «Нанотехнологии» ННГУ, зам. директора НИФТИ ННГУ

Нижегородский университет

ННГУ является одним из ведущих университетов России и представляет собой крупный учебно-научный комплекс.

В составе университета 19 факультетов, 136 кафедр, 6 научно-исследовательских институтов, инновационно-технологический центр, а так же ряд центров научно-исследовательской и образовательной направленности.

В ННГУ обучается около 40 000 студентов, около 1 000 аспирантов и докторантов.

В ННГУ работает **300** докторов наук, **900** кандидатов наук, **19** действительных членов и член-корреспондентов РАН, **23** заслуженных деятеля науки РФ, **33** лауреата Государственной премии, премий Президента и Правительства РФ.

Предложение ННГУ для программ инновационного развития

Раздел программы: Безопасность и надежность трубопроводного транспорта

Проблема: Изменение физико-механических свойств трубных сталей вследствие деградации их структуры в процессе длительной эксплуатации магистральных трубопроводов.

Предложение: Разработка научной, методической и приборной базы для оценки работоспособности и надежности длительно эксплуатируемых магистральных газопроводов на основе определения уровня старения металла труб

ОБЪЕМ ВЫПОЛНЕННЫХ РАБОТ

по проблеме исследования старения трубных сталей

ПЕРИОД: 1998 – наст. время.

ОБЪЕКТЫ: образцы сталей труб с мест аварий, из аварийного запаса, с мест плановых ремонтов

КОЛИЧЕСТВО ОБРАЗЦОВ: более 300 темплетов, несколько тысяч образцов МАРКИ СТАЛЕЙ: 12ГСБ—12Г2СБ, 09Г2ФБ-10Г2ФБ, 17Г1С-У, 17Г2СФ, 14Г2САФ, 10Г2С1, 19Г, 14ГН, 14ХГС, 15Г2С, а также металл труб производства Японии, Франции, Чехословакии.

МЕТОДИКИ ИСПЫТАНИЙ: 14 стандартных и новых методик испытаний и исследований

Работы выполнены на базе Научно-исследовательского физико-технического института ННГУ

КОМПЛЕКС ДЛЯ ПРОВЕДЕНИЯ СТРУКТУРНЫХ ИССЛЕДОВАНИЙ

- Высокоразрешающий просвечивающий электронный микроскоп Jeol JEM-2100F.
- Растровый электронный микроскоп Jeol JSM-6490 с блоком микроанализа.
- Универсальный туннельный/атомно-силовой микроскоп «Ассигех-2100».
- Интегрированный сверхвысоковакуумный комплекс для исследования топографии и физикохимических свойств поверхности твердых тел Omicron MultiProbe S (в т.ч. сверхвысоковакуумный зондовый микроскоп UHV STM/AFM LF1).

комплекс для коррозионных испытаний

- Лабораторный комплекс для проведения испытаний на равномерную коррозию при переменном погружении.
- Лабораторные комплексы для проведения испытаний на коррозионное растрескивание под напряжением по схеме «трехточечный изгиб» при различных значениях температур и электрохимических потенциалов.
- Лабораторные комплексы для проведения испытаний на коррозионное растрескивание под напряжением по схеме «консольный изгиб»
- Лабораторные испытательные машины для проведения испытаний на коррозионную усталость по схеме «консольный изгиб».

КОМПЛЕКС ДЛЯ ФИЗИКО-МЕХАНИЧЕСКИХ ИССЛЕДОВАНИЙ

- Автоматизированный испытательная машина Tinus Olsen H25K-S (2,5 тс), оборудованная системой для проведения сверхпластических испытаний при повышенных температурах (до 1200 °C) и высоких скоростях деформации (1000 мм/мин).
- Универсальная испытательная машина EU-40 (40 тс) для проведения механических и технологических испытаний.
- Лабораторный автоматизированный комплекс для проведения усталостных испытаний при комнатной и повышенной температурах.
- Универсальная испытательная машина типа 2167
 P-50 (5 тс) для проведения механических испытаний на растяжение, сжатие, изгиб и малоцикловую усталость при комнатной и повышенной температурах.
- Автоматизированный прецизионный комплекс ACC-1 для измерения микропластических свойств металлов методом релаксационных испытаний.
- Автоматизированный комплекс для исследования внутреннего трения в герцовом (обратный крутильный маятник) диапазоне частот в режимах непрерывного нагрева и изотермического отжига.

Методика релаксационных испытаний. Определение ресурса материала конструкций

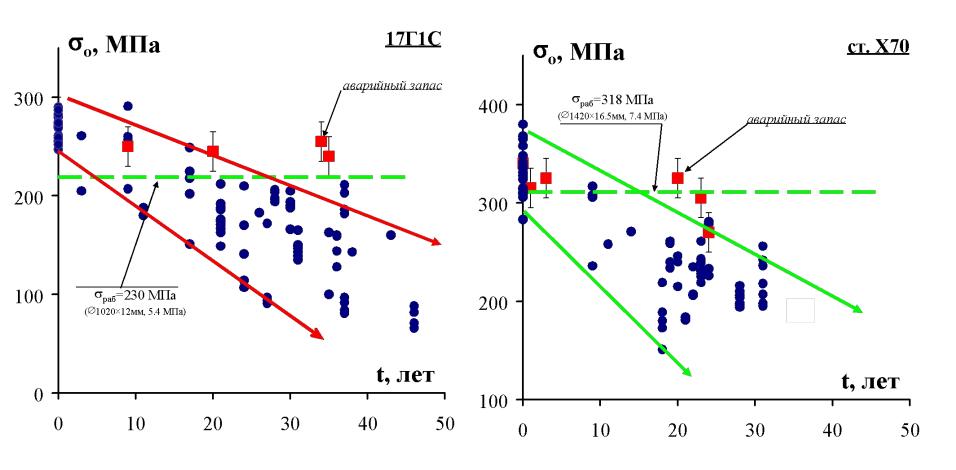
Методика релаксационных испытаний позволяет прецизионно определять микропластические характеристики материала. Полученные данные позволяют определить допустимые рабочие напряжения и в сочетании с информацией об уровне рабочих напряжений определить остаточный ресурс материала конструкции.

Автоматизированная установка АСС-1 позволяет проводить экспресс-анализ механических свойств материалов при температурах − 40 - + 500 °C, необходимых для оценки состояния металла и расчета остаточного ресурса.

Патент на изобретение №2204817, 2002 г.

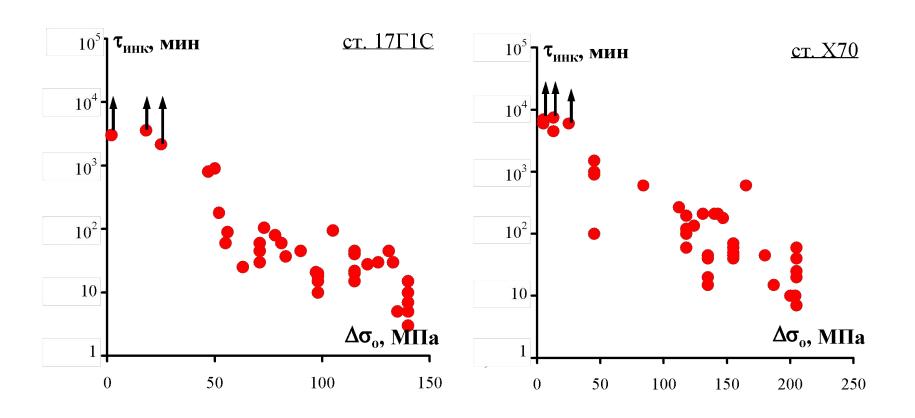
Оценка уровня старения

$$S(\sigma_{o}) = \frac{\sigma_{o}^{\text{ucx}} - \sigma_{o}^{\text{usmep}}(t)}{\sigma_{o}^{\text{ucx}} - \sigma_{o}^{\text{min}}} \cdot 100\%$$

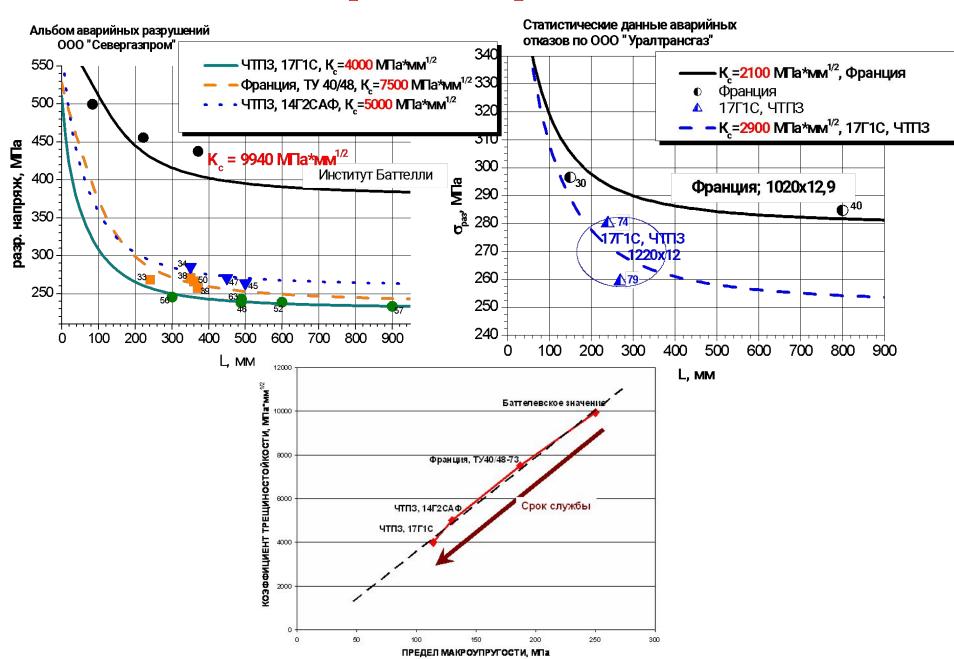

 $\sigma_o^{usmep}(t)$ - величина предела макроупругости металла после t лет эксплуатации

о макроупругости стали в исходном состоянии

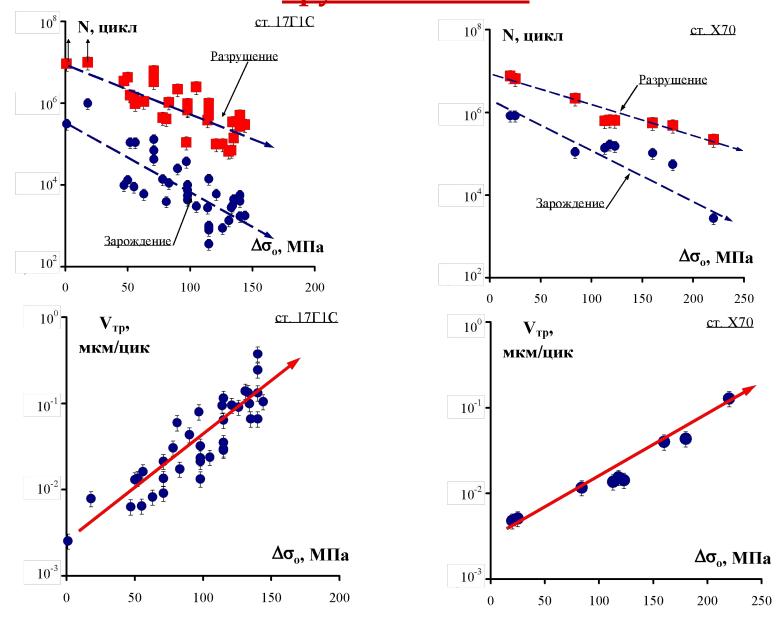
σ_o^{min} – минимальная величина предела макроупругости стали в полностью состаренном состоянии



Прогноз интенсивности старения

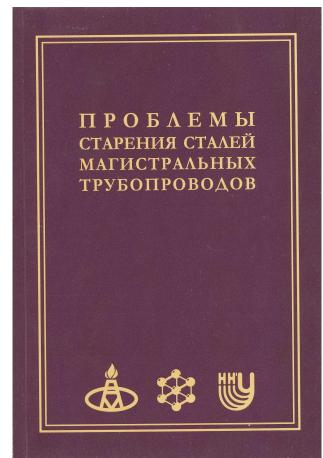

Зависимость предела макроупругости сталей от времени эксплуатации МГ

Влияние уровня старения на стресс-коррозионную стойкость трубных сталей



Зависимость времени инкубационного периода КРН т_{инк} (время до появления первой трещины) от уровня старения

Влияние старения на трещиностойкость



<u>Влияние уровня старения на усталостную прочность</u> <u>трубных сталей</u>

Заключение по результатам исследований

- 1. В процессе эксплуатации структура стали изменяется (деградирует).
- 2. Процессы изменения структуры стали связаны с «уходом» углерода из решетки феррита и образованием хрупкой сетки карбидов на границах зерен феррита процессом старения стали.
- 3. Скорость процесса старения зависит от параметров структуры и технологии изготовления стали она максимальна для сталей контролируемой прокатки и минимальна для нормализованных и горячекатанных сталей.
- 4. Изменение структуры стали (старение) в процессе эксплуатации само по себе не приводит к разрушению, но оно приводит к изменению критических параметров и скоростей повреждающих процессов и, следовательно, создает условия для быстрого разрушения труб.

ПРО ЕКТ: Разработка научной, методической и приборной базы для оценки работоспособности и надежности длительно эксплуатируемых магистральных газопроводов на основе определения уровня старения металла труб

Ожи даемые результаты проекта:

- 1. База данных по результатам исследований и испытаний трубных сталей, содержащая информацию об уровне и интенсивности их старения.
- 2. Методика оценки уровня старения металла труб МГ на основе анализа результатов релаксационных испытаний.
- 3. Методика оценки технического состояния и срока безопасной эксплуатации металла труб МГ с учетом уровня старения трубных сталей.