Исследование зависимости периода колебаний пружинного маятника от массы груза, жёсткости пружины, амплитуды колебаний и температуры воздуха.

Работа учащихся 9 класса МОУ «Старовыслинская ООШ» Шингалова Радия и Надукова Дениса

2011г. Учитель: Потапов Н.А.

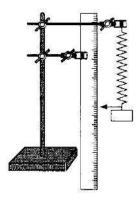
Цель нашей работы:

 Исследовать зависимость периода колебаний пружинного маятника от массы груза, жёсткости пружины, амплитуды колебаний и температуры воздуха.

Введение.

- В настоящее время в технике и быту используются различные виды пружины.
 Твердые тела и материалы, которыми располагает человечество, во многом определяет уровень его технического развития.
- Изучая свойства твердых тел, мы заинтересовались упругими свойствами пружины и решили исследовать их.

Подготовка к эксперименту


Для проведения экспериментов подобрали следующее оборудование: штатив с 2-мя лапками, пружина №1 (к₁=6,4 Н/м), пружина №2 (к₂=21,6Н/м), набор грузов массой по 100г, линейка, секундомер, динамометр.

ПЕРИОД КОЛЕБАНИЯ

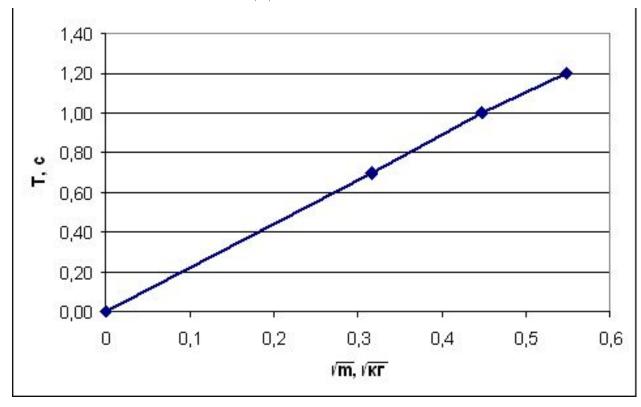
Одной из важных характеристик колебательного движения является период колебания

 интервал времени, в течение которого происходит одно полное колебание.
 Связь периода колебаний пружинного маятника от массы груза и жёсткости пружины известна:

$$T = 2\pi \sqrt{\frac{m}{k}}$$

План проведения эксперимента:

- □ Приготовить приборы и оборудования.
- Исследовать зависимость периода колебаний пружинного маятника от массы груза, жёсткости пружины, амплитуды и температуры воздуха.
- □ Заполнение таблиц измерений.
- □ Вычерчивание графиков зависимостей.
- Анализ графиков зависимостей периода от разных параметров.
- □ Обобщение результатов.


Исследование зависимости периода колебаний пружинного маятника от массы груза.

Подвесим к штативу пружину №1. Возьмем гирю массой 100г и прикрепим к пружине. С помощью секундомера определим время 10 колебаний пружинного маятника. Повторим эксперимент с гирями 200г и 300г. Определим по формуле период колебаний: $T = \frac{t}{N}$

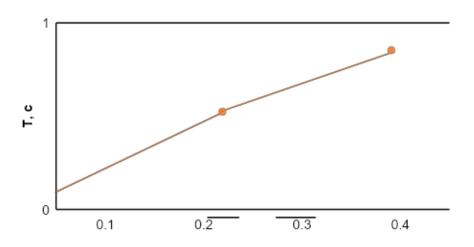
Результаты измерений и вычислений запишем в таблицу 1:

	No	Macca	Число	Время	Период
13	опыта	m (кг)	колебаний	t (c)	T (c)
Пружина №1			N		
ужи	1	0,1	10	7,01	0,7
Пр	2	0,2	10	9,58	1
	3	0,3	10	11,98	1,2

ГРАФИК ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ОТ МАССЫ ГРУЗА

$$\sqrt{m_1} = \sqrt{0.1} = 0.316;$$
 $\sqrt{m_2} = \sqrt{0.2} = 0.447;$ $\sqrt{m_3} = \sqrt{0.3} = 0.548$

ВЫВОД: Период колебания пружинного маятника пропорционален корню квадратному из массы тела: $T \sim \sqrt{m}$


ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА ОТ ЖЁСТКОСТИ ПРУЖИНЫ

Подвесим к штативу пружину №2. Возьмем гирю массой 100г и прикрепим к пружине. С помощью секундомера определим время 10 колебаний пружинного маятника. Повторим эксперимент с гирями 200г и 300г. Определим по формуле период колебаний: $T = \frac{t}{N}$

Результаты измерений и вычислений запишем в таблицу 2:

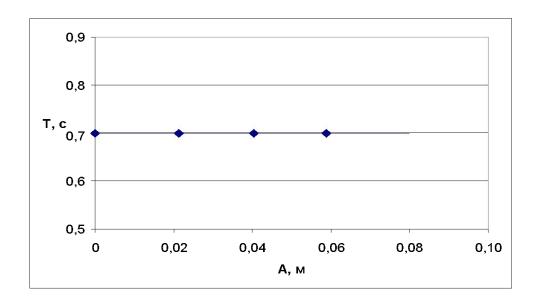
	No	Macca	Число	Время	Период
7	опыта	m (кг)	колебаний	t (c)	T (c)
Пружина № 2			N		
/жи	1	0,1	10	4,5	0,45
Пру	2	0,2	10	5,8	0,58
	3	0,3	10	7,3	0,73

ГРАФИК ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ОТ ЖЁСТКОСТИ ПРУЖИНЫ

$$\frac{1}{\sqrt{k_1}} = \frac{1}{\sqrt{6,4}} = \frac{1}{2,53} \approx 0,39$$

$$\frac{1}{\sqrt{k_2}} = \frac{1}{\sqrt{21,6}} = \frac{1}{4,65} \approx 0,22$$

ВЫВОД: Период колебаний пружинного маятника зависит обратно пропорционально жесткости пружины: $T = f(\frac{1}{\sqrt{k}})$


Исследование зависимости периода колебаний пружинного маятника от амплитуды колебаний

Не изменяя массы груза, жесткости пружины, установим зависимость периода колебаний от амплитуды. Повторим эксперимент №1 при разных амплитудах колебаний.

Результаты измерений и вычислений запишем в таблицу 3:

No	Macca	Жесткость	Число	Амплитуда	Время	Период
опыта	груза	k, Н/м	колебаний	А, м	t, c	$T = \frac{t}{N}$, c
	т,кг		N			N, N
1	0,1	6,4	10	0,02	7	0,7
2	0,1	6,4	10	0,04	7	0,7
3	0,1	6,4	10	0,06	7	0,7

ГРАФИК ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ОТ АМПЛИТУДЫ КОЛЕБАНИЙ

вывод: Эксперимент подтверждает, что период свободных колебаний пружинного маятника не зависит от амплитуды колебаний, а полностью определяется собственными характеристиками колебательной системы (жесткостью k и массой груза m).

$$T = 2\pi \sqrt{\frac{m}{k}}$$

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА ОТ ТЕМПЕРАТУРЫ.

Для исследования зависимости периода колебаний пружинного маятника от температуры повторили эксперимент N = 1 во дворе школы при другой температуре (t = -20~0 C).

ВЫВОД: Период колебания пружинного маятника не зависит от температуры.

Обобщение

В результате экспериментов мы выяснили, что период колебаний пружинного маятника зависит от массы тела, жёсткости пружины и не зависит от амплитуды колебаний и температуры.

Литература:

- Учебник по физике для 9 класса средней школы Н.
 М. Шахмаева, С.Н. Шахмаева, Д.Ш. Шодиева,-М.
 Просвещение. 1990г.
- Кикоин И.К., Кикоин А.К. Физика. Учебник для 9кл.-М. Просвещение, 1990г.
- □ Громов С.В., Родина Н.А., Физика. Учеб. Для 8кл.-М. Просвещение. 2000г.
- □ Сеть Интернет.