Теоретические исследования фосфоресценции комплексов иридия

Выполнила: студентка группы Т10-77в

Санникова Н. А.

Научный руководитель:

проф., д.х.н. Багатурьянц А.А.,

Консультант: Владимирова К. Г.

OLED

(Organic Light-Emitting Device, органическое светоизлучающее устройство) - многослойное устройство, основанное на органических полупроводниковых плёнках с чередующимися слоями между электродами.

- Инжекция электронов от катода (Са, Al, Ва и др.)
- Инжекция дырок от анода (Indium/tin oxide, PANi, PEDOT)
- Транспорт носителей заряда внутри и между слоями

. ...

Проблемы эффективности OLED

- Сбалансированные e^- и h^+ токи
- Внутренний квантовый выход, приближающийся к 90-100% (фосфоресцентные излучатели)
- Сложенные OLED (SOLED) с улучшенным внешним квантовым выходом $h_{\it EL}$
- ullet Допанты, которые улучшают выход по энергии $h_{\scriptscriptstyle Power}$

Иридиевые комплексы с органическими лигандами

$$[Ir(ppy)_{3}]$$

$$(IrL^{0})$$

$$\Phi_{KR} = 0.40$$

$$\Phi_{_{KB}}=0.40$$

[Ir(dpyx)(ppy)Cl] (IrL^1)

$$\Phi_{_{\rm KB}}=0.76$$

 $[Ir(dpyx)(F_4dppy)]$ (IrL^2)

$$\Phi_{KB} = 0.41$$

[Ir(dpyx)(dppy)] (IrL^3)

$$\Phi_{KB} =$$

Цель работы

Определить влияние лигандов на энергию переходов и квантовый выход фосфоресценции комплексов:

- Моделирование спектров поглощения и фосфоресценции исследуемых комплексов
- Оценка эффективности фосфоресценции комплексов иридия (III) путем расчета матричных элементов спин-орбитального взаимодействия S_1 - T_n и T_1 - S_0 состояний. Объяснение экспериментально наблюдающегося тушения фосфоресценции комплекса IrL^3 .

Актуальность работы

Результаты квантово-химических расчетов могут быть использованы для подбора сочетаний металл/лиганды наиболее перспективных электролюминесцентных материалов ₅

Методика расчёта

- Поиск оптимальной геометрии основного состояния методом DFT с функционалом PBE0
- Расчёт спектра поглощения методом TD DFT с функционалом РВЕ0
- Поиск оптимальной геометрии минимума низшего триплетного состояния методом DFT/PBE0
- Оценка радиационной константы скорости T_1 - S_0 перехода. Расчёт матричных элементов оператора спин-орбитального взаимодействия в геометрии минимума T_1 для оценки эффективности синглеттриплетного перехода (на основе расчёта CASSCF)

Все расчеты проводились с использованием базиса 6-31G (d,p) и псевдопотенциала LANL2DZ для описания остовных электронов Ir

$$k_{r} = \frac{1}{\tau_{phosph}} = \frac{64\pi^{4}v^{3}}{3hc^{3}} \sum_{r} \left| \left\langle S_{0}^{'} \left| e\mathbf{r} \right| T_{1}^{'} \right\rangle \right|^{2}$$

$$\left\langle S_{0}^{'}\left|e\mathbf{r}\left|T_{1}^{'}\right\rangle = \sum_{k}\left|\frac{\left\langle S_{k}\left|H_{so}\left|T_{1}\right\rangle\right|^{2}}{E_{T_{1}}-E_{S_{k}}}\right|^{2}\cdot\left|\left\langle S_{0}\left|e\mathbf{r}\left|S_{k}\right\rangle\right|^{2} + \sum_{m}\sum_{n=1}^{1}\left|\frac{\left\langle S_{0}\left|H_{so}\left|T_{m}^{n}\right\rangle\right|^{2}}{E_{S_{0}}-E_{T_{m}^{n}}}\right|^{2}\cdot\left|\left\langle T_{m}^{n}\left|e\mathbf{r}\left|T_{1}\right\rangle\right|^{2}\right|^{2}$$

Спин-орбитальное взаимодействие (spin-orbit coupling, SOC)

$$H_{SO} = \sum_{i} h_{SO,i} \quad h_{SO}(A) = \xi(r_A) \stackrel{\boxtimes}{l}(A) \cdot \stackrel{\boxtimes}{s}$$

l(A) - угловой момент относительно ядра A,

S - спин электрона

 $\xi(r_A)$ - функция расстояния r_A электрона от ядра атома A, описывающая силу SOC

$$\phi = \chi \cdot \theta, \ \theta = \uparrow, \downarrow$$

$$\langle \phi_1 | \mathbf{h}_{SO}(\mathbf{A}) | \phi_2 \rangle = \zeta(\mathbf{A}) \langle \chi_1 | \mathbf{l}(\mathbf{A}) | \chi_2 \rangle \cdot \langle \theta_1 | \mathbf{s} | \theta_2 \rangle$$

 $\zeta(A)$ - константа спин-орбитального взаимодействия

$$\left\langle \chi_1 \left| \stackrel{\bowtie}{l}(A) \right| \chi_2 \right
angle$$
 - матричные элементы углового момента $\left\langle \theta_1 \left| \stackrel{\bowtie}{s} \right| \theta_2 \right
angle$ - матричные элементы оператора спина

Закономерности в расчетах SOC

- Если два состояния различаются на одну спин-орбиталь, то матричный элемент описывающий взаимодействие этих состояний, будет ненулевым. При этом разность магнитных спиновых квантовых чисел между этими состояниями должна быть dM_s =0,±1.
- Спин-орбитальное взаимодействие будет велико, если соответствующие пространственные орбитали локализованы на одном и том же центре, имеющем большую константу SOC.

Значительное спин-орбитальное взаимодействие будет в случае, когда обе пространственные орбитали связаны через оператор углового момента центрального иона металла.

Иллюстрация спин-орбитального взаимодействия между различными состояниями

$$\left\langle \pi \downarrow \left| h_{SO} \right| d \uparrow \right\rangle = \frac{\zeta(M)}{2} \left\langle \pi \left| l_{+}(M) \right| d \right\rangle \left\langle \downarrow \left| s_{-} \right| \uparrow \right\rangle \left\langle \pi^* \downarrow \left| h_{SO} \right| \pi^* \uparrow \right\rangle = \frac{\zeta(M)}{2} \left\langle \pi^* \left| l_{+}(M) \right| \pi^* \right\rangle \left\langle \downarrow \left| s_{-} \right| \uparrow \right\rangle \left\langle d \downarrow \left| h_{SO} \right| d' \uparrow \right\rangle = \frac{\zeta(M)}{2} \left\langle d \left| l_{+}(M) \right| d' \right\rangle \left\langle \downarrow \left| s_{-} \right| \uparrow \right\rangle \left\langle d \left| l_{+}(M) \right| d' \right\rangle \left\langle \downarrow \left| s_{-} \right| \uparrow \right\rangle$$

Результаты расчётов

Спектры поглощения

	Спектр поглощения в растворе ацетонитрила при температуре 295 К, (эксп.)		Спектр поглощения (теор.)	
	Волновое число, см-1		Волновое число, см ⁻¹	
IrL ⁰	26315	1	26 497	
IrL ¹	23978		23623	
IrL ²	21551		22648	
IrL ³	19607		22156	

В расчете удается воспроизвести характер сдвига максимума в спектре поглощения комплексов при изменении структуры лигандов

Энергия переходов минимума $T_1 \rightarrow S_0$

Комплекс	Энергия испускания, эксп.	Энергия испускания, теор.
	cm ⁻¹	cm ⁻¹
[Ir(ppy) ₃] (IrL ⁰)	19607	19305
[Ir(dpyx)(ppy)Cl] (IrL ¹)	19685	19762
[Ir(dpyx)(F ₄ dppy)] (IrL ²)	18281	17513
[Ir(dpyx)(dppy)] (IrL ³)	17094	16155

Результаты расчетов энергии фосфоресценции очень близки к экспериментальным данным

Расчеты матричных элементов спин-орбитального взаимодействия:

- описание многоэлектронной волновой функции методом МКССП
- расчет энергии переходов методом TDDFT и многоконфигурационной теорией возмущений
- расчет матричных элементов спинорбитального взаимодействия и поправок к энергии и оценка радиационной константы скорости

$$k_r = \frac{1}{\tau_{phosph}} = \frac{64\pi^4 v^3}{3hc^3} \sum_{r} \left| \left\langle S_0' \left| e\mathbf{r} \right| T_1' \right\rangle \right|^2$$

$$\left\langle S_{0}^{'}\left|e\mathbf{r}\left|T_{1}^{'}\right\rangle = \sum_{k}\left|\frac{\left\langle S_{k}\left|H_{so}\left|T_{1}\right\rangle\right|^{2}}{E_{T_{1}}-E_{S_{k}}}\right|^{2}\cdot\left|\left\langle S_{0}\left|e\mathbf{r}\left|S_{k}\right\rangle\right|^{2} + \sum_{m}\sum_{n=1}^{1}\left|\frac{\left\langle S_{0}\left|H_{so}\left|T_{m}^{n}\right\rangle\right|^{2}}{E_{S_{0}}-E_{T_{m}^{n}}}\right|^{2}\cdot\left|\left\langle T_{m}^{n}\left|e\mathbf{r}\left|T_{1}\right\rangle\right|^{2}\right|^{2}$$

Диаграммы электронных состояний

Выводы

- 1. Энергии переходов минимума $\mathbf{T_1} \to \mathbf{S_0}$ исследуемых комплексов в расчётах DFT получились меньше по сравнению с экспериментальными данными. Но в целом они хорошо согласуются с экспериментом.
- В расчетах методом TDDFT возникают проблемы с описанием dπ-π* переходов, вследствие большого веса переходов с переносом заряда от металла на лиганд.

Спасибо за внимание!

Ссылки

- **1. Adamo, C.** Toward reliable density functional methods without adjustable parameters: the PBE0 model. / C. Adamo, V. Barone // J. Chem. Phys. 1999. V. 110. P. 6158-6170.
- **2. Dreuw, A.** Single-Reference Ab Initio Methods for the Calculation of Excited States of Large Molecules / A. Dreuw, M. Head-Gordon // *Chem. Rev.* 2005. Vol. 105. P. 4009-4037.
- **3. Ernzerhof, M.** Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. / M. Ernzerhof, G.E. Scuseria // J. Chem. Phys. 1999. V. 110. P. 5029-5036.
- **4. Matsunaga, N**. Relativistic potential energy surfaces of XH2 (X=C, Si, Ge, Sn, and Pb) molecules: Coupling of 1A1 and 3B1 states. / N. Matsunaga, S. Koseki, M. S. Gordon // J. Chem. Phys. 104 (20), 22 May 1996
- **5. Rausch, A. F.**, Homeier, H. H., Yersin H., Organometallic Pt(II) and Ir(III) Triplet Emitters for OLED Applications and the Role of Spin-Orbit Coupling: A Study Based on High-Resolution Optical Spectroscopy // Top Organomet Chem (2010) 29: 193-235
- **6. Tong, G. S.-M.,** Che Ch.-M., Emissive or Nonemissive? A Theoretical Analysis of the Phosphorescence Efficiencies of Cyclometalated Platinum (II) Complex
- **7. Wilkinson, A. J.** Luminescent Complex of Iridium (III) Containing N^C^N-Coordinating Terdentate Ligands / A. J. Wilkinson, H. Puschmann, J. A. K. Howard, C. E. Foster, J. A. Gareth Williams // *Inorganic Chemistry*, Vol. 45, № 21, 2006
- **8.** Плотников В.Г. Теоретические основы спектрально-люминесцентной систематики молекул. / В.Г. Плотников // Успехи химии 1980 Т. 49. С. 327 361.
- 9. Плотников В.Г. Межмолекулярные взаимодействия и спектрально-люминесцентные свойства оптических молекулярных сенсоров. / В. Г. Плотников, В.А Сажников, М.В. Алфимов // Химия высоких энергий 2007 Т. 41. С. 349 362.

Предварительные расчёты методом CASSCF для IrL¹

В комплексе IrL^1 в первом и втором возбуждённом состоянии происходит переход с π -орбитали dpyx-лиганда смешанной с π -орбиталью ppy-лиганда и d орбиталью Ir на π -орбиталь dpyx-лиганда

Диаграммы электронных состояний IrL^0 и IrL^3

 $HSO2=110 \text{ cm}^{-1}$

IrL³

$$T_{4} \xrightarrow{d_{XZ}\pi_{1} \rightarrow \pi^{*}_{1}} T_{2} \xrightarrow{\pi_{2} \rightarrow \pi^{*}_{2}} T_{3} \xrightarrow{\pi_{1} \rightarrow \pi^{*}_{1}} T_{2}$$

$$S_{1} \xrightarrow{d_{XZ}\pi_{1} \rightarrow \pi^{*}_{1}} T_{2} \xrightarrow{d_{XZ}\pi_{1} \rightarrow \pi^{*}_{1}} T_{1} \xrightarrow{d_{XZ}\pi_{1} \rightarrow \pi^{*}_$$

HSO2=336 cm⁻¹