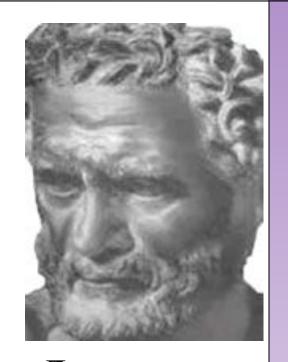
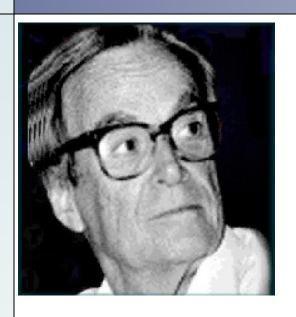
Строение атомов

Химия. 11 класс.


Сазонов В.В., учитель химии МОУ средней общеобразовательной школы д.Васькион

План изучения

- 1. Важность познания атома.
- 2. Модели строения атома.
- 3. Опыт Эрнеста Резерфорда.
- 4. Ядерная модель строения атома.
- 5. Протонно-нейтронная модель ядра.
- 6. Обобщение.


Возникновение понятия «атом»

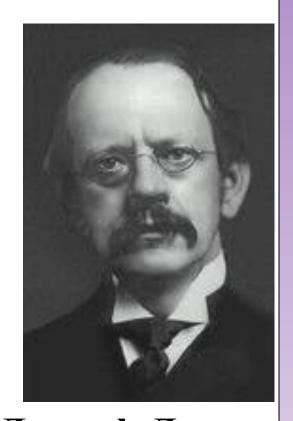
Понятие «атом» впервые появилось в работах древнегреческих философов Демокрита и Левкипта. Под атомом они понимали мельчайшую частицу вещества (atomos – неделемый). К атомной гипотезе они пришли только на основании размышлений, т.к. в то время люди не владели современными физическими методами исследования.

Демокрит (ок. 460–370 до н.э.) Древнегреческий ученый

Выдающийся физик современности, лауреат Нобелевской премии Роберт Фейнман говорил:

«Если бы в результате какой-то мировой катастрофы все накопленные знания вдруг оказались уничтоженными, и к грядущим поколениям живых существ перешла только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это атомная гипотеза: все тела состоят

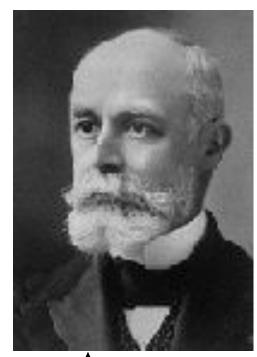
из атомов - маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому».



Экспериментальные данные, свидетельствующие о делимости атома

- 1. Открытие электрона 1891г.
- 2. Открытие явления радиоактивности 1896г.
- 3. Опыт Эрнеста Резерфорда 1911г.

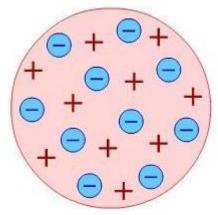
Открытие электрона


- В Занимаясь изучением газового разряда Д.Д.Томсон, совместно с сотрудниками выполнил серию классических работ, приведших к открытию электрона впервые измерил отношение заряда электрона к массе в 1897 г.
- Джозеф-Джон Томсон английский физик, удостоенный в 1906 г. Нобелевской премии по физике за работы, которые привели к открытию электрона.

Джозеф-Джон ТОМСОН (18.12.1856 - 30.8.1940)

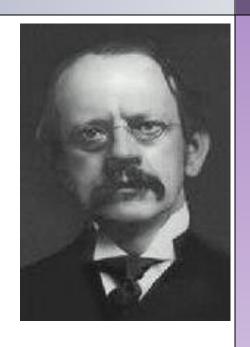
Радиоактивность

В 1896 году французский ученый Анри Беккерель открыл явление естественной радиоактивности - самопроизвольного распада ядер атомов тяжелых элементов.



Анри БЕККЕРЕЛЬ (15.XII.1852 - 25.VIII.1908)

Радиоактивность


Модель атома Томсона

Одну из первых моделей атома предложил английский физик Дж. Томсон в 1903 г.

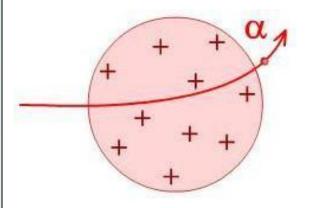
По Томсону атом – равномерно заполненный положительным зарядом шар, внутри которого находятся электроны.

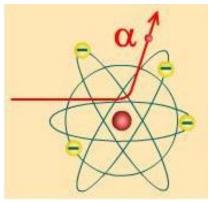
—— Не объясняла явление радиоактивности и нуждалась в экспериментальной проверке.



Джозеф Джон Томсон 1856 - 1940

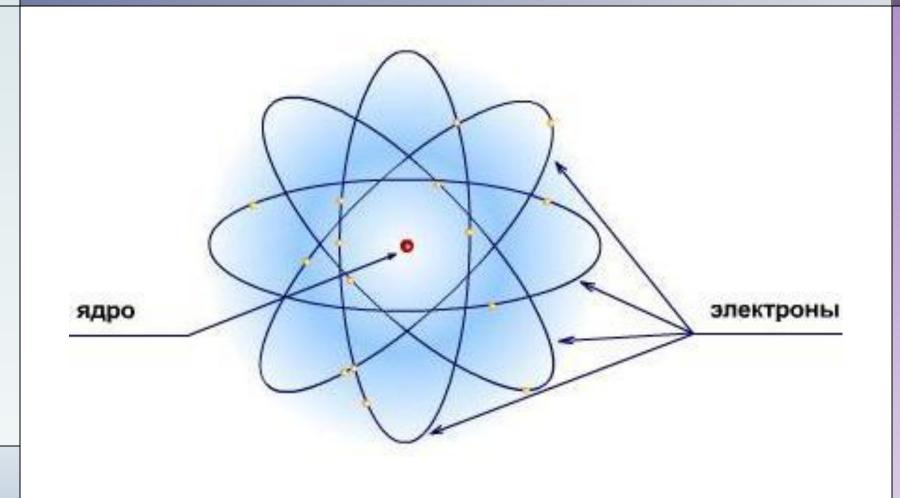
ОпытЭ.Резерфорда


Э. Резерфорд с учениками проверил состоятельность модели атома Томсона.



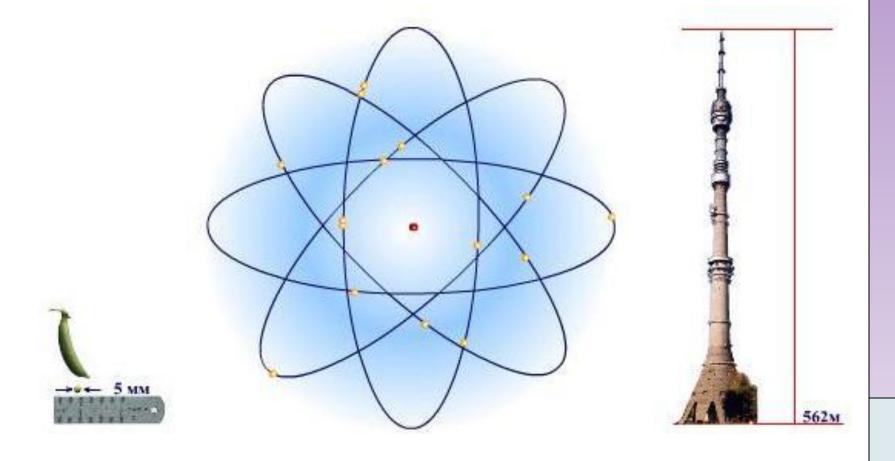
Эрнест РЕЗЕРФОРД (1871 - 1937)

Выводы Э. Резерфорда



В атомах большая часть «пустая», а отлетающие

Ученому понадобилось несколько лет, чтобы понять столь неожиданное рассеяние α-частиц на большие углы.


обратно и—частицы встречают на своем пути «сгусток» положительно зараженной массы. Этот сгусток был назван ядром атома.

Ядерная модель спроения апома

Размер апома и его ядра

$$R_{at.} \sim 10^{-10} \text{ м}$$
 $R_{gdpa} \sim 10^{-14} - 10^{-15} \text{ м}$

Открытие протона

1913 г. Э.Резерфорд выдвинул гипотезу о том, что одной из частиц, входящих в состав атомных ядер всех химических элементов, является ядро атома водорода.

1919 г. Э.Резерфорд провел эксперимент по исследованию взаимодействия α-частиц с ядрами атомов азота.

$$\begin{array}{c} \alpha \\ + \end{array} \begin{array}{c} N \\ \end{array} \longrightarrow \begin{array}{c} + \\ 1 \\ p \end{array}$$

Протон (от греч. protos – первый)

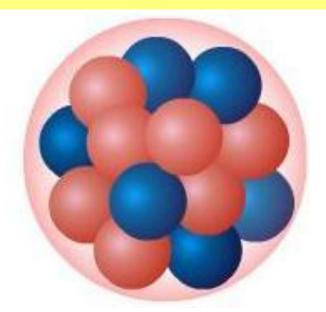
Открытие нейтрона

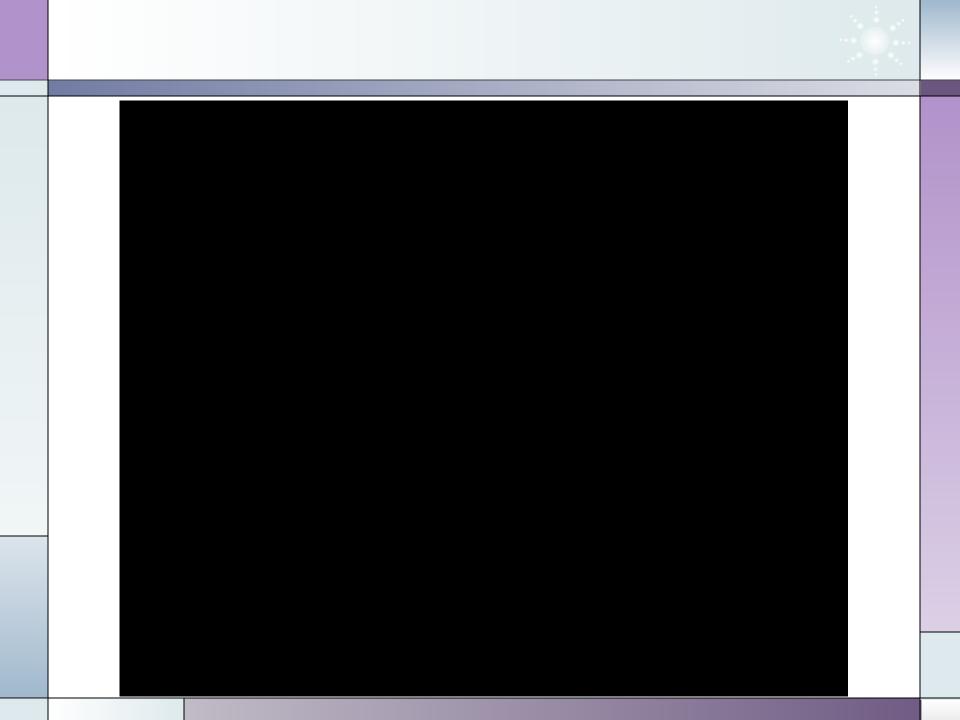
1920 г. Э.Резерфорд предположил существование электрически нейтральной частицы с массой, приблизительно равной массе протона.

<u>1932 г.</u> Английский ученый Джеймс Чедвик выделил новую частицу в бериллиевом излучении.

$$\begin{array}{c} \mathbf{\alpha} + \mathbf{Be} \\ \end{array} \longrightarrow \begin{array}{c} \mathbf{1} \\ 0 \end{array}$$

Нейтрон – нейтральный (нет заряда)


Протонно-нейтронная модель ядра


1932 г. советские ученые Е.Н. Гапон, Д.Д.Иваненко и немецкий физик Гейзенберг

Все ядра атомов состоят из частиц двух видов – протонов и нейтронов, имеющих общее название – нуклоны (от лат. nucleus – ядро).

Харакперистика элементарных частиц

Частица	Macca	Заряд
Протон р [†]	1	+ 1
Нейтрон n ⁰	1	0
Электрон е ⁻	≈ 0	-1

Спроение апомов

Атом

Ядро

состоит из нуклонов (протонов и нейтронов).

Определяет массу атома. $m(ядра) \approx m(атома)$. R(ядра) << R(атома)

Электронная оболочка

состоит из электронов.

Определяет размер атома. R(эл.об.) = R(атома) $m(эл.об.) \approx 0.$

Cocmub amoma

Атомы химических элементов состоят из трех частиц:

$$\frac{1}{1}$$
 p или p^+

$$_{1}^{0}$$
и или $\boldsymbol{n}^{\boldsymbol{\theta}}$

$$^{-1}_{0}e$$

или е

ATOM – наименьшая частица химического элемента, носитель его свойств.

Количественная характеристика атомов

 ${}_{Z}^{A}X$

А – массовое число атома

Z – зарядовое число атома

 $_{3}^{7}Li$

Масса атомов: 7 а.е.м.

Заряд ядра: + 3

Состав ядра:

число протонов: 3

число нейтронов: 4

Число электронов: 3

Опишите характеристики и состав атомов

14 С Масса атомов: 14 а.е.м. Заряд ядра: + 6 Состав ядра:

число протонов: 6

число нейтронов: 8

Число электронов: 6

Домашнее задание:

- ♦ Учебник: § 1 (до квантовых постулатов Бора), упр. 1, 2.
- **Записи в тетради.**