4.3.3. Химическая связь

Атомы образуют прочные соединения - молекулы

Вопросы

Почему одни атомы способны объединиться, а другие - нет Чем вызываются силы, удерживающие их Какова величина энергии связи

Можно получить рассчитав электронную структуру образований

Аналитически задача решается полностью только в случае простейших атомов Н и Не

Два приближения

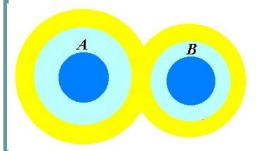
Метод молекулярных орбиталей (ММО Метод валентных связей (МВС).

4.3.3.А. Метод молекулярных орбиталей

- Как и в случае атома _______ Одноэлектронное приближение
 - Движение данного электрона в некотором усредненном поле, создаваемом ядрами и остальными электронами.

- Каждому электрону соответствует
- Волновая функция ψ

Молекулярная орбиталь


- Собственное значение энергии
- Разрешенные орбитали заполняются двумя электронами на каждую, начиная с наинизшего состояния

Отличие от атома

Многоцентровая задача

Двухатомная молекула АВ

Электроны внутренних оболочек

Не участвуют в образовании химической связи

Вид их волновых функций и собственные значения энергии сохраняются после образования химической связи

Рассматриваем только внешнюю, валентную, орбиталь

Пусть на ней только один электрон.

Около ядра А

Значение гамильтониана преимущественно определяется свойствами остова *А*

Молекулярная орбиталь ψ не должна значительно отличаться от $\psi_{\scriptscriptstyle A}$ свободнго атома А

Около ядра В

 ψ должна быть близка к $\psi_{\scriptscriptstyle B}$.

Метод линейной комбинации атомных орбиталей (ЛКАО)

Вариационный принцип Ритца

$$E = \frac{\int \psi * \not A \psi d\tau}{\int \psi * \psi d\tau}$$

Основному состоянию отвечают ψ , обеспечивающие минимальное значение собственной энергии

Умножаем уравнение Шредингера слева на ψ^* , интегрируем по всему пространству

Появляются интегралы

$$E_i = \int \psi_i * \mathcal{A} \psi_i d\tau \implies$$

 $E_i = \int \psi_i * H \psi_i d\tau$ \Longrightarrow E_i близка к значению энергии электрона в основном состоянии свободного атома

$$\beta \equiv \int \psi_A * H \psi_B d\tau$$
 Резонансный интеграл

$$S \equiv \int \psi_A * \psi_B d\tau$$

$$c_A^2 E_A + 2c_A c_B \beta + c_B^2 E_B = E(c_A^2 + 2c_A c_B S + c_B^2)$$

$$E = \frac{c_A^2 E_A + 2c_A c_B \beta + c_B^2 E_B}{\left(c_A^2 + 2c_A c_B S + c_B^2\right)}$$

Требование минимальности энергии

$$\frac{\partial E}{\partial c_A} = \frac{\partial E}{\partial c_B} = 0$$

Секулярные или вековые уравнения

$$\begin{cases} c_A (E_A - E) + c_B (\beta - ES) = 0 \\ c_A (\beta - ES) + c_B (E_B - E) = 0 \end{cases}$$

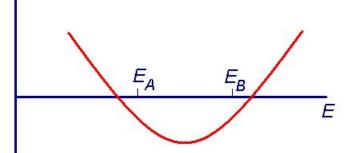
Чтобы система имела решение, необходимо равенство нулю детерминанта

$$\begin{cases} c_A (E_A - E) + c_B (\beta - ES) = 0 \\ c_A (\beta - ES) + c_B (E_B - E) = 0 \end{cases}$$

Чтобы система имела решение, необходимо равенство нулю детерминанта

Левая часть $\equiv f(E)$

Пусть $E_A < E_B$


Решение - точки пересечения f(E) с осью абсцисс

При энергиях E_A и E_B \longrightarrow f(E)<0

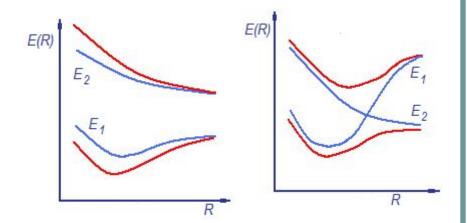
f(E)

$$(E_A - E)(E_B - E) - (\beta - ES)^2 = 0$$

Решения уравнения справа от E_B и слева от E_A

Энергетический промежуток между собственными значениями, отвечающим комбинированной волновой функции, оказывается больше.

Уровни «отталкиваются» друг от друга.


Промежуток зависит от расстояния между ядрами *R*

$$(E_A - E)(E_B - E) - (\beta - ES)^2 = 0$$

Два решения для комбинированной ψ. Одно ниже, другое - выше Промежуток зависит от расстояния между ядрами *R*

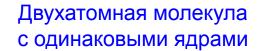
$$E_A(R)$$
 и $E_B(R)$ не пересекаются

 $E_{A}(R)$ и $E_{B}(R)$ пересекаются

Собственные значения E, соответствующие комбинированной ψ , не равны друг другу вследствие взаимного отталкивания уровней

Правило справедливо и для многоатомных молекул

Правило непересечения


Справедливо, когда ψ_{A} и ψ_{B} имеют одинаковую симметрию.

При разной симметрии β и S равны θ или малы

Энергия комбинированной волновой функции не отличается от $E_{\scriptscriptstyle A}$ и $E_{\scriptscriptstyle B}$

Двухатомная молекула с одинаковыми ядрами

Гомоядерная молекула

Простейшая система - H_2^+

R

$$E_A = E_B = E_H$$

$$H$$
 H_2^+ H

E

$$E = \frac{E_H \boxtimes \beta}{1 \boxtimes S}$$

Дважды вырожденный уровень расщепляется на два.

Нижний уровень

Минимум при $R=R_0$ Энергия связи l_0 .

Устойчивое состояние

Связывающая молекулярная орбиталь

Верхний уровень

Молекула неустойчива, самопроизвольно распадается

Разрыхляющая или антисвязывающая молекулярная орбиталь

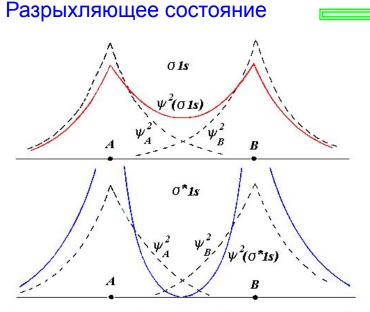
Антисвязывающая смещена больше, чем связывающая

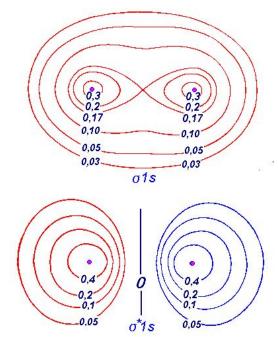
Образование химической связи в молекуле Не, не возможно

Образование химической связи в молекуле He_2 не возможно

Молекулярный ион водорода

$$\frac{c_A}{c_B} = \pm 1$$


Связывающее состояние



$$\psi_b = \frac{1}{\sqrt{2+2S}} (\psi_A + \psi_B)$$

$$\psi_b = \frac{1}{\sqrt{2 + 2S}} (\psi_A + \psi_B)$$

$$\psi_{ab} = \frac{1}{\sqrt{2 - 2S}} (\psi_A - \psi_B)$$

Плоскость, проходящая через середину, является узловой

Связывающая МО

- Заряд электрона в большей степени сконцентрирован в середине между ядрами, чем при простой суперпозиции электронных плотностей.
- Протяженность связывающей МО в направлении, перпендикулярном оси молекулы, не велика Ее "эффективная" толщина меньше равновесного межъядерного расстояния.

Антисвязывающая МО

- Электронная плотность «выталкивается» из середины между ядрами
- Плоскость, проходящая через середину, является узловой
- При пересечении плоскости ψ изменяет знак

Обе МО симметричны относительно вращения вокруг оси молекулы σ -орбитали

Связывающая МО симметрична относительно центра молекулы g - четная /gerade/

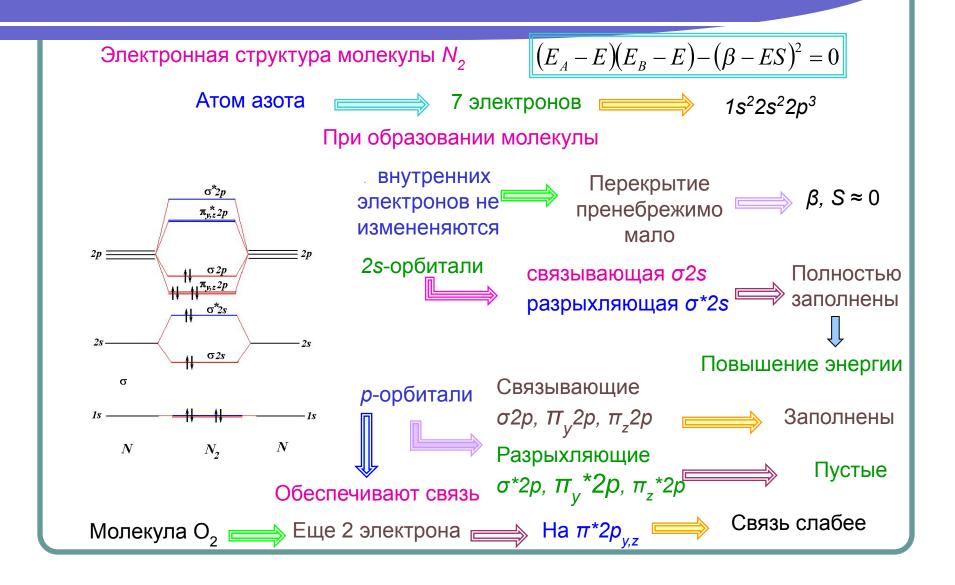
Разрыхляющая – антисимметрична $\longrightarrow u$ - нечетная /ungerade / $\longrightarrow \sigma_u^*1s$

Электронная плотность концентрируется в области между ядрами

Химическая связь

Электронная плотность концентрируется в области между ядрами

Кулоновская энергия оказывается больше, поскольку взаимодействует с обоими ядрами, а не с одним


 $\psi_{g} = \psi(A:1s) + \psi(B:1s)$ σ_{1s} σ_{1s} $\psi_{g} = \psi(A:1s) - \psi(B:1s)$ σ_{1s} $\psi_{g} = \psi(A:2p_{z}) + \psi(B:2p_{z})$ $\pi_{z} + 2p_{z}$ $\pi_{$

Несколько повышается кинетическая энергия электрона. Поперечное сжатие электронного облака приводит к уменьшению объема, в котором находится электрон

МО, симметричные относительно вращения вокруг оси молекулы называют σ - орбиталями, а не имеющей таковой - π -орбиталями

Иногда указывают, из каких атомных орбиталей они образованы. Чтобы выделить разрыхляющие орбитали, ставят значок *.

Повышение энергии

