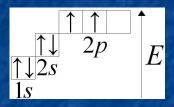

Презентация по теме: «Углерод и его свойства»


Выполнила ученица 9 класса Климовой Дарьи группа химиков

Строение атома углерода

Углерод (лат. Carboneum) С – химический элемент IV группы периодической системы Менделеева: атомный номер 6, атомная масса 12,011(1). Рассмотрим строение атома углерода. На наружном энергетическом уровне атома углерода находятся четыре электрона.

1s22s22p2

- Углерод был известен с глубокой древности, и имя первооткрывателя этого элемента неизвестно.
- В конце XVII в. флорентийские ученые Аверани и Тарджони пытались сплавить несколько мелких алмазов в один крупный и нагрели их с помощью зажигательного стекла солнечными лучами. Алмазы исчезли, сгорев на воздухе. В 1772 г. французский химик А. Лавуазье показал, что при сгорании алмаза образуется СО2. Лишь в 1797 г. английский ученый С. Теннант доказал идентичность природы графита и угля. После сгорания равных количеств угля и алмаза объемы оксида углерода (IV) оказались одинаковыми.
- Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обуславливает особое положение углерода среди других элементов.

Химические свойства углерода

При обычных температурах алмаз, графит, уголь химически инертны, но при высоких температурах активность их увеличивается. Как и следует из строения основных форм углерода, уголь вступает в реакции легче, чем графит и тем более алмаз. Графит не только более реакционноспособен, чем алмаз, но и, реагируя с некоторыми веществами, может образовывать такие продукты, каких не образует алмаз.

Химические реакции

- 1. В качестве окислителя углерод реагирует с некоторыми металлами при высоких температурах, образуя карбиды: 3C + 4Al = Al4C3 (карбид алюминия).
- 2. С водородом уголь и графит образуют углеводороды. Простейший представитель метан СН4 – может быть получен в присутствии катализатора Ni при высокой температуре (600-1000°C):

 При взаимодействии с кислородом углерод проявляет восстановительные свойства. При полном сгорании углерода любой аллотропной модификации образуется оксид углерода (IV):

$$C + O2 = CO2$$
.

■ При неполном сгорании образуется оксид углерода (II) СО:

$$C + O2 = 2CO$$
.

Обе реакции экзотермичны.

4. Особенно ярко восстановительные свойства угля проявляются при взаимодействии с оксидами металлов (цинка, меди, свинца и др.), например:

$$C + 2CuO = CO2\uparrow + 2Cu$$
,
 $C + 2ZnO = CO2\uparrow + 2Zn$.

На этих реакциях основан важнейший процесс металлургии – выплавка металлов из руд.

В иных случаях, например при взаимодействии с оксидом кальция, образуются карбиды:

$$CaO + 3C = CaC2 + CO\uparrow$$
.

5. Уголь окисляется горячими концентрированными серной и азотной кислотами:

• Любые формы углерода устойчивы по отношению к щелочам!

Неорганические соединения углерода

- Углерод образует два оксида оксид углерода (II) СО и оксид углерода (IV) СО2.
- Оксид углерода (II) СО бесцветный, не имеющий запаха газ, малорастворимый в воде. Его называют угарным газом, так как он очень ядовит. Попадая при дыхании в кровь, быстро соединяется с гемоглобином, образуя прочное соединение карбоксигемоглобин, лишая тем самым возможности гемоглобин переносить кислород.

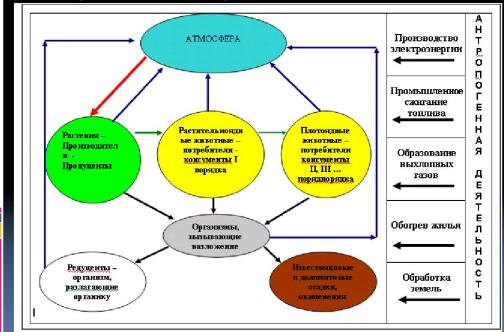
При вдыхании воздуха, содержащего 0,1% СО, человек может внезапно потерять сознание и умереть. Угарный газ образуется при неполном сгорании топлива, вот почему так опасно преждевременное закрывание дымоходов.

- Оксид углерода (II) относят, как вы уже знаете, к несолеобразующим оксидам, так как, будучи оксидом неметалла, он должен реагировать со щелочами и основными оксидами с образованием соли и воды, однако этого не наблюдается.
- 2CO + O2 = 2CO2.
- Оксид углерода (II) способен отнимать кислород у оксидов металлов, т. е. восстанавливать металлы из их оксидов.
- Fe2O3 + 3CO = 2Fe + 3CO2.

Именно это свойство оксида углерода (II) используют в металлургии при выплавке чугуна.

Оксид углерода (IV)

- Оксид углерода (IV) СО2 широко известный под названием углекислый газ бесцветный, не имеющий запаха газ. Он примерно в полтора раза тяжелее воздуха. При обычных условиях в 1 объеме воды растворяется 1 объем углекислого газа.
- При давлении примерно 60 атм углекислый газ превращается в бесцветную жидкость. При испарении жидкого углекислого газа часть его превращается в твердую снегообразную массу, которую в промышленности прессуют, это известный вам «сухой лед», который применяют для хранения пищевых продуктов. Вы уже знаете, что твердый углекислый газ имеет молекулярную решетку, способен к возгонке.
- Углекислый газ СО2 это типичный кислотный оксид: взаимодействует со щелочами (например, вызывает помутнение известковой воды), с основными оксидами и водой.
- Он не горит и не поддерживает горения и потому применяется для тушения пожаров. Однако магний продолжает гореть в углекислом газе с образованием оксида и выделением углерода в виде сажи.


CO2 + 2Mg = 2MgO + C.

Заключение

Углерод постоянно циркулирует в земной биосфере по замкнутым взаимосвязанным путям.

 В настоящее время к природным процессам добавляются последствия сжигания ископаемого топлива.

Круговорот углерода

