

Метод крупных вихрей для исследования космической и астрофизической плазмы

ЧЕРНЫШОВ Александр, Карельский К.В., Петросян А.С. Институт космических исследований РАН

План

- Метод крупных вихрей для сжимаемой МГД турбулентности политропной плазмы.
- Метод крупных вихрей для сжимаемой МГД турбулентности теплопроводящей плазмы.
- Установление слабо сжимаемого режима в МГД турбулентности космической плазмы и свойства турбулентности локальной межзвёздной среды.

Актуальность

- Солнечная корона
- Межзвездная/межпланетная среда
- Солнечная конвективная зона
- Магнитосфера Земли
- Инженерные применения

- Звездный/солнечный ветер
- Солнечный тахоклин
- Аккреационный диск

Моделирование турбулентности

DNS

(Direct Numerical Simulation) Разрешаются все масштабы

движения жидкости. Метод DNS не требует специальных замыканий. Сталкивается с принципиальными трудностями, связанными с большими числами Рейнольдса, так как в этом случае число степеней свободы турбулентного движения велико и минимальное количество узлов на численной сетке должно быть столь большим, что ограничивает применение прямого численного моделирования.

RANS (Reynolds averaged Navier-Stokes)

Статистический подход для исследования турбулентности, который заключается в осреднении уравнений движения. Все параметры движения разлагаются на среднюю и турбулентную составляющие. В уравнении Навье-Стокса появляются рейнольдсовские напряжения, которые необходимо замкнуть. Вся турбулентность моделируется (например, k - ¿ модель), а не высчитывается, как в DNS.

LES (Large Eddy Simulation)

Крупномасштабная часть турбулентности высчитывается непосредственно, а мелкомасштабная моделируется, то есть LES является промежуточным подходом между DNS и RANS. **B** LES используется операция фильтрации для разложения характеристик турбулентного движения на крупномасштабную и мелкомасштабную части, что связано с достаточной изотропностью, однородностью и универсальностью мелких масштабов.

Сравнение RANS, DNS и LES

Метод крупных вихрей для сжимаемой МГД турбулентности политропной плазмы.

Уравнения МГД политропной плазмы

 $\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_j}{\partial x_i} = 0 \qquad - уравнение неразрывности$ $\frac{\partial \rho u_{i}}{\partial t} + \frac{\partial}{\partial x_{i}} (\rho u_{i}u_{j} + p\delta_{ij} - \sigma_{ij}) - \frac{1}{c} \varepsilon_{ijk} j_{j}B_{k} = 0 \quad -y paвнение u Mnyльсов$ $\frac{\partial B_i}{\partial t} = \varepsilon_{ijk} \frac{\partial}{\partial x_i} \varepsilon_{klm} (B_l u_m) + \eta \nabla^2 B_i \qquad - уравнение магнитной$ индукции $\frac{\partial B_j}{\partial x_i} = 0$

Политропное соотношение: $p = \rho^{\gamma}$

Виды фильтрационных функций

1.Гаусиановский фильтр

$$G(x-x';\overline{\Delta}) = (\frac{6}{\pi \overline{\Delta}^2})^{\frac{1}{2}} \exp(-\frac{6(x-x')^2}{\overline{\Delta}^2})$$

2.Фурье-фильтр

$$G(x-x';\overline{\Delta}) = \frac{\sin[k_c(x-x')]}{k_c(x-x')} , k_c = \pi/\overline{\Delta}$$

З.Цилиндрический
 фильтр

$$G(x-x';\overline{\Delta}) = \begin{cases} \frac{1}{\overline{\Delta}} & , \quad |x-x'| < \frac{\overline{\Delta}}{2} \\ 0 & \end{cases}$$

Отфильтрованные уравнения традиционным способом

$$\begin{aligned} \frac{\partial \bar{\rho} \bar{u}_i}{\partial t} &+ \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_i \bar{u}_j + \bar{p} \delta_{ij} - \bar{\sigma}_{ij} + \frac{\bar{B}^2}{8\pi} \delta_{ij} - \frac{1}{4\pi} \bar{B}_j \bar{B}_i \right) = -\frac{\partial}{\partial x_j} \left(\overline{\rho u_j u_i} - \bar{\rho} \bar{u}_i \bar{u}_j \right) + \\ &+ \frac{1}{4\pi} \frac{\partial}{\partial x_j} \left(\overline{B_j B_i} - \bar{B}_i \bar{B}_j \right) \left(-\frac{\partial}{\partial t} \left(\overline{\rho u_i} - \bar{\rho} \bar{u}_i \right) \right) \end{aligned}$$

$$\frac{\partial \bar{\rho}}{\partial t} + \frac{\partial \bar{\rho} \bar{u_j}}{\partial x_j} = \left(-\frac{\partial}{\partial x_j} \left(\overline{\rho u_j} - \bar{\rho} \bar{u_j}\right)\right)$$

Дополнительные слагаемые,

которые нужно параметризовать!

<u>Это требует дополнительные численные ресурсы</u>

Процедура фильтрации - 2

Рассматривается сжимаемая жидкость, поэтому чтобы избежать появления дополнительных слагаемых в уравнениях после фильтрации, в работе используется средневзвешенная фильтрация (фильтрация по Фавру).

$$\widetilde{f} = \frac{\overline{\rho f}}{\overline{\rho}}$$

$$f = \tilde{f} + f''$$

$$\frac{\underline{C} войства:}{\rho u'' \neq 0}$$
$$\widetilde{\widetilde{u}} \neq \widetilde{u}$$
$$\widetilde{\widetilde{u}} \neq \widetilde{u}$$

Отфильтрованные уравнения МГД

В правой части уравнений - подсеточные слагаемые, которые надо параметризовать:

$$\tau_{ij}^{u} = \overline{\rho}((u_{j}u_{i})^{\sim} - \widetilde{u}_{j}\widetilde{u}_{i}) - \frac{1}{M_{A}^{2}}(\overline{B_{i}B_{j}} - \overline{B}_{j}\overline{B}_{i})$$
$$\tau_{ij}^{b} = (\overline{u_{i}B_{j}} - \overline{B}_{j}\widetilde{u}_{i}) - (\overline{B_{i}u_{j}} - \widetilde{u}_{j}\overline{B}_{i})$$

Subgrid scale (SGS) или Subfilter scale (SFS)

$$\overline{\rho}\widetilde{u_ju_i} = \overline{\rho}(\widetilde{u_i} + \widetilde{u_i''})(\widetilde{u_j} + u_j'') = \overline{\rho}\left(\widetilde{\widetilde{u_i}\widetilde{u_j}} + \widetilde{\widetilde{u_i}u_j''} + \widetilde{\widetilde{u_j}u_i''} + \widetilde{u_i''u_j''}\right)$$

Нелинейные члены должны быть записаны, используя крупномасштабные величины:

$$\frac{\partial}{\partial x_j} \bar{\rho} \widetilde{u_j u_i} = \frac{\partial}{\partial x_j} \bar{\rho} \widetilde{u}_i \widetilde{u}_j + \frac{\partial}{\partial x_j} \left(\bar{\rho} \widetilde{u_j u_i} - \bar{\rho} \widetilde{u}_i \widetilde{u}_j \right) = \frac{\partial}{\partial x_j} \bar{\rho} \widetilde{u}_i \widetilde{u}_j + \frac{\partial}{\partial x_j} t_{ji}^u$$

Турбулентный тензор можно представить как:

$$t_{ij}^{u} = \bar{\rho}\left(\widetilde{u_{i}u_{j}} - \widetilde{u_{i}}\widetilde{u_{j}}\right) = \bar{\rho}\left(\widetilde{\widetilde{u_{i}}\widetilde{u_{j}}} - \widetilde{u_{i}}\widetilde{u_{j}}\right) + \bar{\rho}\left(\widetilde{\widetilde{u_{i}}u_{j}''} + \widetilde{\widetilde{u_{j}}u_{i}''}\right) + \bar{\rho}\left(\widetilde{\widetilde{u_{i}'}u_{j}''}\right)$$

Леонардовский Перекрестный Рейнольдсовский член член член

Подсеточное моделирование

Условия реализуемости:

$ au_{ii} \geq 0$	для	$i\in\{1,2,3\}$
$ au_{ij} \le \sqrt{ au_{ii} au_{jj}}$	для	$i,j\in\{1,2,3\}$

 $det(\tau_{ij}) \ge 0$

Модель вихревой вязкости:

$$\tau_{ij}^{u} - \frac{1}{3} \tau_{kk}^{u} \delta_{ij} = -2\nu_{t} (\widetilde{S}_{ij} - \frac{1}{3} \widetilde{S}_{kk} \delta_{ij})$$

$$\tau_{ij}^{b} - \frac{1}{3} \tau_{kk}^{b} \delta_{ij} = -2\eta_{t} \overline{J}_{ij}$$

Для изотропного подсеточного слагаемого из условий реализуемости:

$$\tau_{12}^2 + \tau_{13}^2 + \tau_{23}^2 \le \tau_{11}\tau_{22} + \tau_{11}\tau_{33} + \tau_{22}\tau_{33}$$

Используя модель вихревой взякости:

$$k \geq \frac{1}{2}\sqrt{3}(\nu_t|S^u|)$$

 $|\widetilde{S}^{u}| = (2S_{ij}S_{ij})^{1/2}$

 $k = \frac{1}{2} (\tau_{11} + \tau_{22} + \tau_{33})$

 $\widetilde{S}_{ij} = \frac{1}{2} \left(\frac{\partial \widetilde{u}_i}{\partial x_j} + \frac{\partial \widetilde{u}_j}{\partial x_i} \right)$ - крупномасштабный тензор скорости деформации $\overline{J}_{ij} = \frac{1}{2} \left(\frac{\partial \overline{B}_i}{\partial x_j} - \frac{\partial \overline{B}_j}{\partial x_i} \right)$ - крупномасштабный тензор магнитной ротации Расширенная модель Смагоринского для МГД

$$\tau_{ij}^{u} - \frac{1}{3}\tau_{kk}^{u}\delta_{ij} = -2\nu_{t}(\widetilde{S}_{ij} - \frac{1}{3}\widetilde{S}_{kk}\delta_{ij})$$

Турбулентная вязкость: $v_t = C_1 \overline{\rho} \overline{\Delta}^2 | \widetilde{S}^u |$

 $|\widetilde{S}^{u}| = (2S_{ij}S_{ij})^{1/2}$

 $au_{kk}^{u} = 2Y_1 \overline{\rho} \overline{\Delta}^2 |\widetilde{S}^{u}|^2$ - подсеточное замыкание для изотропной части

$$\tau^{b}_{ij} - \frac{1}{3}\tau^{b}_{kk}\delta_{ij} = -2\eta_{t}\overline{J}_{ij}$$

Турбулентная магнитная $\eta_t = D_1 \overline{\Delta}^2 | j |$ *диффузия:*

Расширенная модель Колмогорова для МГД

Если длина фильтра находится в инерционном интервале, то можно предположить, что энергия диссипации магнитной и кинетической энергии постоянна.

Параметризации основываются на колмогоровском скейлинге:

$${\cal V}_t = C_s \, \overline{
ho} \overline{\Delta}^{4/3}$$
 - турбулентная вязкости

 $\eta_t = D\Delta^{4/3}$ - турбулентная магнитная диффузия

Расширенная модель, основанная на перекрестной спиральности

Определение перекрестной спиральности: $H^c = \int_V (u \cdot B) dV$ (cross helicity)

Перекрестная спиральность связана с обменом между кинетической и магнитной энергией, вызванной силой Лоренца.

$$\boldsymbol{v}_{t} = C_{s} \overline{\rho} \overline{\Delta}^{2} | \widetilde{S}_{ij}^{u} \widetilde{S}_{ij}^{b} |^{1/2}$$
$$\boldsymbol{\eta}_{t} = D \overline{\Delta}^{2} | j \boldsymbol{\omega} |^{1/2}$$

Турбулентные вязкость и магнитная диффузия

Расширенная модель подобия масштабов для МГД

Здесь неизвестные турбулентные тензоры моделируются в предположении, что они пропорциональны Леонардовскому члену. Теория этого подхода базируется на предположении об универсальном характере турбулентности на небольших масштабах.

$$\tau_{ij}^{u} = \overline{\rho}((\widetilde{u}_{j}\widetilde{u}_{i})^{\sim} - \widetilde{\widetilde{u}}_{j}\widetilde{\widetilde{u}}_{i}) - \frac{1}{M_{A}^{2}}(\overline{\overline{B}_{i}}\overline{\overline{B}_{j}} - \overline{\overline{B}_{j}}\overline{\overline{B}_{i}})$$

$$\tau_{ij}^{b} = (\overline{\widetilde{u}_{i}\overline{B}_{j}} - \overline{\overline{B}}_{j}\widetilde{\widetilde{u}}_{i}) - (\overline{\overline{B}_{i}\widetilde{u}_{j}} - \widetilde{\widetilde{u}}_{j}\overline{\overline{B}}_{i})$$

Расширенная смешанная модель для МГД

Расширенная смешанная модель является объединением двух моделей: расширенной модели Смагоринского и расширенной модели подобия масштабов:

$$\tau_{ij}^{u} - \frac{1}{3} \tau_{kk}^{u} \delta_{ij} = -2C_{s} \overline{\rho} \overline{\Delta}^{2} | \widetilde{S}^{u} | (\widetilde{S}_{ij} - \frac{1}{3} \widetilde{S}_{kk} \delta_{ij}) + \overline{\rho} ((\widetilde{u}_{j} \widetilde{u}_{i})^{\sim} - \widetilde{\widetilde{u}}_{j} \widetilde{\widetilde{u}}_{i}) - \frac{1}{M_{A}^{2}} (\overline{\overline{B}_{i} \overline{B}_{j}} - \overline{\overline{B}}_{j} \overline{\overline{B}}_{i})$$

$$\tau_{ij}^{b} = -2D\overline{\Delta}^{2} |\overline{j}| \overline{J}_{ij} + (\overline{\widetilde{u}_{i}\overline{B}_{j}} - \overline{\overline{B}_{j}}\widetilde{\widetilde{u}_{i}}) - (\overline{\overline{B}_{i}\widetilde{u}_{j}} - \widetilde{\widetilde{u}_{j}}\overline{\overline{B}_{i}})$$

Численная реализация

- Уравнения МГД в консервативной форме
- Конечно-разностные схемы 4го порядка точности
- Модифицированный метод Рунге-Кутта 3 порядка точности для временного интегрирования
- Фильтр Гаусса 4го порядка точности
- Периодические граничные условия
- Для нелинейных членов используется косо-симметричная дискретизация

дивергентная форма конвективная форма

$$N_{i}^{d} = \frac{\partial(\rho u_{i}u_{j})}{\partial x_{j}}$$

$$N_{i}^{a} = \rho u_{j}\frac{\partial u_{i}}{\partial x_{j}} + u_{i}\frac{\partial\rho u_{j}}{\partial x_{j}}$$

$$N_{i}^{a} = \rho u_{j}\frac{\partial u_{i}}{\partial x_{j}} + u_{i}\frac{\partial\rho u_{j}}{\partial x_{j}}$$

$$KOCOCUMMETPUYHAS
форма$$

Плотность дискретизации:

для DNS 256x256x256 *для LES* 64x64x64

Расчетная область: $l_x = l_y = l_z = 2\pi$

Рассмотренные случаи

Левая граница для *Re* выбрана таким образом, чтобы обеспечить режим развитой турбулентности, а правая - компромиссом между получением адекватных результатов DNS и необходимостью проведения сравнительного анализа с подсеточными моделями LES. Для магнитного числа Рейнольдса величина правой границы, рассматриваемого интервала, обусловлена тем, что в данной работе исследуем затухающую сжимаемую турбулентность, а при увеличении *Re_m* повышается вероятность возникновения динамо-процессов в трехмерном течении заряженной жидкости. Левая граница для *Re_m* - выраженной ролью магнитных эффектов в МГД течении. Ограниченность числа Маха единицей определяется приближением политропности газа. Течения соответствующие значению *Ms* меньше 0.2 не представляет интереса с точки зрения изучения сжимаемых течений.

Случай	Re_I	Re	<i>R</i> e_m	Ms	Ма
1	50	390	10	0.6	0.6
2	25	100	10	0.6	0.6
3	100	1580	10	0.6	0.6
4	50	390	2	0.6	0.6
5	50	390	20	0.6	0.6
6	50	390	10	0.2	0.6
7	50	390	10	1	0.6

Обозначение	Подсеточная модель	вид графика	
M 0	Без модели	сплошная линия	
M1	Модель Смагоринского	штриховая линия ——	
M2	Модель Колмогорова	пунктирная линия	
M3	Модель, основанная на спиральности	линия из черных точек	
M4	Модель подобия масштабов	линия из +	
M5	Смешанная модель	штрих-пунктирная линия	

$$\varepsilon_{\mu} = 2\mu \widetilde{S}_{ij}\widetilde{S}_{ij}$$

молекулярная диссипация

$$\chi_{\mu} = -\tau^{\,u}_{\,ij}\widetilde{S}_{\,ij}$$

подсеточная кинетическая энергии диссипации

 $\varepsilon_{\eta} = \eta | \bar{j} |^2$ магнитная молекулярная диссипация

$$\chi_b = -\tau^b_{ij} \overline{J}_{ij}$$

подсеточная магнитная энергия диссипации

Флуктуирующие части скорости и магнитного поля:

$$\upsilon_{i} = \widetilde{u} - \langle \overline{\rho}\widetilde{u}_{i} \rangle / \langle \overline{\rho} \rangle$$
$$b_{i} = \overline{B}_{i} - \langle \overline{B}_{i} \rangle$$

Пологость для компонент скорости:

Пологость для магнитного поля:

Ассиметрия для компонент скорости:

Ассиметрия для магнитного поля:

Спектры кинетической и магнитной энергии

Кинетическая энергия

Магнитная энергия

Перекрестная спиральность

Выводы

ПМетод LES сформулирован для сжимаемой МГД турбулентности для моделирования сжимаемой. Проведены численные исследования пяти подсеточных параметризаций при различных параметрах подобия: модель Смагоринского; модель Колмогорова; модель, основанная на взаимной спиральности скорости и магнитного поля; модель подобия масштабов и смешанная модель при различных числах подобия

□В целом, наилучшие результаты демонстрируют расширенная модель Смагоринского для МГД случая и модель, основанная на взаимной спиральности магнитного поля и поля скоростей. Модель подобия масштабов не обеспечивает достаточной диссипацией кинетическую и магнитную энергию и эту модель следует использовать только вместе с моделями вихревой вязкости (например, с моделью Смагоринского), что является основной идеей смешанной модели.

□ Метод LES имеет хорошие перспективы для исследования сжимаемой магнитогидродинамической турбулентности политропной плазмы.

Метод крупных вихрей для сжимаемой МГД турбулентности теплопроводящей плазмы.

Отфильтрованные уравнения МГД для теплопроводящей плазмы

$$\begin{aligned} \frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j}}{\partial x_{j}} &= 0 \\ \frac{\partial \overline{\rho} \widetilde{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} (\overline{\rho} \widetilde{u}_{i} \widetilde{u}_{j} + \overline{p} \delta_{ij} - \frac{1}{\operatorname{Re}} \widetilde{\sigma}_{ij} + \frac{\overline{B}^{2}}{2M_{A}^{2}} - \frac{1}{M_{A}^{2}} \overline{B}_{i} \overline{B}_{j}) &= -\frac{\partial \tau_{ji}^{u}}{\partial x_{j}} \\ \frac{\partial \overline{B}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} (\widetilde{u}_{j} \overline{B}_{i} - \overline{B}_{j} \widetilde{u}_{i}) - \frac{1}{\operatorname{Re}} \frac{\partial^{2} \overline{B}_{i}}{\partial x_{j}^{2}} &= -\frac{\partial \tau_{ji}^{b}}{\partial x_{j}} \\ \frac{\partial \overline{\rho} \widetilde{E}}{\partial t} + \frac{\partial}{\partial x_{j}} ((\widetilde{E} + \overline{P}) \widetilde{u}_{j} - \frac{1}{M_{A}^{2}} \overline{B}_{i} \overline{B}_{j} \widetilde{u}_{i}] + \frac{\partial}{\partial x_{j}} [\frac{\widetilde{q}_{j}}{\operatorname{Pr} \operatorname{Re}} M_{s}^{2} (\gamma - 1) - \frac{1}{\operatorname{Re}} \widetilde{\sigma}_{ij} \widetilde{u}_{i}] - \\ \frac{\partial}{\partial x_{j}} [\frac{\eta}{\operatorname{Re}} M_{a}^{2}} \overline{B}_{i} (\frac{\partial \overline{B}_{i}}{\partial x_{j}} - \frac{\partial \overline{B}_{j}}{\partial x_{i}})] &= -\frac{\partial}{\partial x_{j}} (\frac{1}{\gamma M_{s}^{2}} Q_{j} + \frac{1}{2} J_{j} + \frac{1}{2M_{a}^{2}} V_{j} - \frac{1}{M_{s}^{2}} G_{j}) \end{aligned}$$

Уравнение состояния:

 $\overline{p} = \frac{\widetilde{T}\overline{\rho}}{\gamma M_{\perp}^2}$

$$E = \rho e + \frac{1}{2} \rho u_{i} u_{i} + \frac{1}{2M_{a}^{2}} B_{i} B_{i} \qquad e = \frac{T\rho}{\gamma(\gamma - 1)M_{s}^{2}}$$

полная энергия

внутренняя энергия

Подсеточные слагаемые в отфильтрованных уравнениях

$$\tau_{ij}^{u} = \overline{\rho}((u_{j}u_{i})^{\sim} - \widetilde{u}_{j}\widetilde{u}_{i}) - \frac{1}{M_{A}^{2}}(\overline{B_{i}B_{j}} - \overline{B}_{j})$$

$$\tau_{ij}^{b} = (\overline{u_{i}B_{j}} - \overline{B}_{j}\widetilde{u}_{i}) - (\overline{B_{i}u_{j}} - \widetilde{u}_{j}\overline{B}_{i})$$

$$Q_{j} = \overline{\rho}((u_{j}T)^{\sim} - \widetilde{u}_{j}\widetilde{T})$$

$$J_{j} = \overline{\rho}((u_{j}u_{k}u_{k})^{\sim} - \widetilde{u}_{j}(u_{k}u_{k})^{\sim})$$

$$V_{j} = (\overline{B_{k}B_{k}u_{j}} - \overline{B_{j}B_{i}}\widetilde{u}_{j})$$

$$G_{i} = (\overline{B_{i}B_{k}u_{k}} - \widetilde{u}_{k}\overline{B}_{k}\overline{B}_{k})$$

- \overline{B}_i) тензор подсеточных напряжений
 - магнитный подсеточный тензор напряжений
 - подсеточный поток тепла
 - турбулентной подсеточной диффузии
 - поток подсеточной магнитной энергии
 - подсеточная энергия взаимодействия магнитного натяжения и скорости

Для подсеточных тензоров в уравнениях импульса и индукции, используем модель Смагоринского для МГД случая:

$$\tau_{ij}^{u} = -2C \ \overline{\rho}\overline{\Delta}^{2} |\widetilde{S}^{u}| (\widetilde{S}_{ij} - \frac{1}{3}\widetilde{S}_{kk}\delta_{ij}) + \frac{2}{3}Y \ \overline{\rho}\overline{\Delta}^{2} |\widetilde{S}^{u}|^{2} \delta_{ij}$$

$$\tau_{ij}^{b} = -2D\overline{\Delta}^{2} |\overline{j}| \overline{J}_{ij}$$

Для параметризации подсеточного потока тепла используется вихревая диффузионная модель. Данная модель похожа на определение молекулярного теплового потока, однако молекулярная вязкость и число Прандтля были заменены соответственно на динамическую вихревую вязкость и на турбулентное число Прандтля:

$$Q_{j} = -C_{s} \frac{\overline{\Delta}^{2} \overline{\rho} | \widetilde{S}^{u} |}{\Pr_{T}} \frac{\partial \widetilde{T}}{\partial x_{j}}$$

Модель для Jj получается по аналогии Рейнольдского подхода для усреднения уравнений Навье-Стокса и в предположении, что $\widetilde{u}_i \cong \widetilde{\widetilde{u}}_i$

$$J_{j} = \widetilde{u}_{k} \tau^{u}_{jk}$$

Для окончательного замыкания полной системы уравнений сжимаемой магнитной гидродинамики необходимо параметризовать подсеточные слагаемые в уравнении энергии, возникающие из-за наличия магнитного поля. Для того чтобы получить эти подсеточные модели, воспользуемся теорией, основанной на обобщенных центральных моментах. Данный подход в нашей работе расширен и применен к МГД случаю:

$$\begin{split} \varphi(B_{i},B_{k}) &= (\overline{B_{i}B_{k}} - \overline{B_{i}}\overline{B_{k}}) \\ \varphi(u_{i},B_{k}) &= (\overline{u_{i}B_{k}} - \widetilde{u_{i}}\overline{B_{k}}) \\ \varphi(B_{i},B_{k},u_{j}) &= (\overline{B_{i}B_{k}u_{j}} - \overline{B_{i}}\overline{B_{k}}\widetilde{u_{j}}) - \widetilde{u_{j}}\varphi(B_{i},B_{k}) \\ - \overline{B_{k}}\varphi(u_{j},B_{i}) - \overline{B_{i}}\varphi(u_{j},B_{k}), \end{split}$$
- корреляционные моменты третьего порядка

Подсеточный поток магнитной энергии:

$$V_{j} = \overline{B_{k}B_{k}u_{j}} - \overline{B_{j}B_{i}}\widetilde{u}_{j} = \overline{B_{k}B_{k}u_{j}} - \widetilde{u}_{k}\overline{B_{k}}\overline{B_{k}} - \overline{B_{j}B_{i}}\widetilde{u}_{j} + \widetilde{u}_{k}\overline{B_{k}}\overline{B_{k}}$$

Сделаем замену индексов в корреляционном моменте третьего момента :

$$\varphi(B_k, B_k, u_j) = (\overline{B_k B_k u_j} - \overline{B_k \overline{B_k u_j}}) - \overline{u_j} \varphi(B_k, \overline{B_k})$$

$$-\overline{B_k} \varphi(u_j, B_k) - \overline{B_k} \varphi(u_j, B_k).$$

$$V_j = \varphi(B_k, B_k, u_j) + 2\overline{B_k} \varphi(u_j, B_k).$$

Аналогичным образом запишем соотношение для SGS тензора Gj:

$$G_{j} = \varphi(B_{j}, B_{k}, u_{k}) + \overline{B}_{k}\varphi(u_{k}, B_{j}) + \widetilde{u}_{k}\varphi(B_{j}, B_{k})$$
$$+ \overline{B}_{j}\varphi(u_{k}, B_{k}).$$

Предполагается, что тройной корреляцией можно пренебречь. Магнитная корреляция пренебрегается при моделировании SGS тензора в уравнении сохранения количества движения, так как магнитные моменты имеют намного более слабую корреляция по сравнению с моментами скорости. Последний член описывает корреляции в направлении, где вектор скорости и вектор магнитного поля коллинеарны, следовательно, сила Лорентца в этом направлении отсутствует.

Поэтому, сумму подсеточных тензоров Vj и Gj можно представить в следующем виде:

1-11

(-1-1

j = l

$$\frac{1}{2}V_j - G_j \simeq \frac{1}{2}(2\overline{B}_k\varphi(u_j, B_k)) - \overline{B}_k\varphi(u_k, B_j)$$

$$\frac{1}{2}V_j - G_j \cong \overline{B}_k\tau_{jk}^b$$
Так как магнитный подсеточный тензор напряжений
может быть представлен в виде:
$$\tau_{ij}^b = (\overline{u_iB_j} - \overline{B}_j\widetilde{u}_i) - (\overline{B_iu_j} - \widetilde{u}_j\overline{B}_i) = \varphi(u_i, B_j) - \varphi(u_j, B_i)$$

 $T \subset I$

-1)

 $\mathcal{T}(\mathcal{T}_1,\mathcal{T}_1)$

Рассмотренные случаи

Так как эффекты сжимаемости и временная динамика температуры, определяемая из уравнения полной энергии, нетривиально зависят от числа Маха, в данной работе рассматриваются три случая: число Маха равно Ms = 0.38, то есть течение умеренно сжимаемое;

при числах Maxa Ms = 0.65, когда сжимаемость играет существенную роль; и

третий случай – Ms = 1.45, что соответствует появлению сильных

разрывов в существенно сжимаемом течении.

Во всех трех численных экспериментах использовались следующие безразмерные параметры при вычислениях: гидродинамическое число Рейнольдса Re = 281, микромасштабное (тейлоровское) число Рейнольдса $Re_l = 43$, магнитное число Рейнольдса Rem = 10, Альфвеновское число Маха Ma = 1.2, число Прандтля Pr = 1.0, показатель политропы 1.5.

Временная динамика кинетической и магнитной энергии

Case	Curve
DNS	Diamond line
LES without any SGS models	Solid line
LES	Dotted line
LES without energy SGS terms	Marker +

Временная динамика перекрестной спиральности и температуры

Временная динамика асимметрии температуры и параметра Ft

 $St = rac{\langle T^3 \rangle}{(\langle T^2 \rangle)^{3/2}},$ - ассиметрия $Ft = (\langle (T - \langle T \rangle)^2 \rangle)^{1/2}$ - параметр, характеризующий флуктуации температуры

Временная эволюция кинетической и магнитной энергии.

Временная динамика перекрестной спиральности и температуры

M=1.45

Временная эволюция кинетической и магнитной энергии.

M=1.45

Временная динамика перекрестной спиральности и температуры

Выводы

- Получена система отфильтрованных уравнений МГД при наличии уравнения полной энергии. Предложены новые подсеточные модели для подсеточных слагаемых, появляющиеся после операции фильтрации, в уравнении полной энергии при наличии магнитного поля.
- На кинетическую и магнитную энергию учет подсеточных слагаемых в уравнении полной энергии почти не оказывает никакого эффекта, даже при высоких числах Маха, в то же время для температуры (соответственно и для внутренней энергии) наличие подсеточных моделей в уравнении полной энергии является важным условием для повышения точности вычислений термодинамических величин. При увеличении значения числа Маха увеличиваются осцилляции кинетической, магнитной энергии и температуры.
- Метод LES с использованием явной средневзвешенной фильтрацией демонстрирует хорошие результаты при моделировании электро- и теплопроводящей плазмы в сжимаемой МГД турбулентности при различных числах Маха, особенно для дозвуковых течений.

Установление слабо сжимаемого режима в МГД турбулентности космической плазмы и свойства турбулентности локальной межзвёздной среды.

Локальная межзвездная среда

Armstrong et al., ApJ (1995), 443:209-221

Межзвездная среда - это вещество и поля, наблюдаемое в пространстве между звездами внутри галактик. Межзвездная среда нашей галактики, непосредственно примыкающая к солнечной системе, называется локальной (местной) межзвездной средой.

Спектр колмогоровского типа $k^{-5/3}$ был теоретически получен для несжимаемой гидродинамической среды, а межзвездная турбулентность является МГД и существенно сжимаемой, поэтому основной задачей является понимания возникновения колмогоровского спектра для флуктуаций плотности и энергии в локальной межзвездной турбулентности.

МГД модель

Статистически однородная, изотропная плазма в локальной межзвездной среде может быть описана одножидкостной магнитогидродинамической моделью:

$$\begin{aligned} & \overline{\partial \rho} \\ & \overline{\partial t} = -\frac{\partial \rho u_j}{\partial x_j} \\ & \frac{\partial \rho u_i}{\partial t} = -\frac{\partial}{\partial x_j} (\rho u_i u_j + p \delta_{ij} - \sigma_{ij} - \frac{1}{4\pi} B_j B_i + \frac{1}{8\pi} B^2) \\ & \frac{\partial B_i}{\partial t} = -\frac{\partial}{\partial x_j} (B_i u_j - B_j u_i) + \eta \nabla^2 B_i \\ & \frac{\partial B_j}{\partial x_j} = 0 \end{aligned}$$

Мелкомасштабные числа Маха Крупномасштабные значения чисел подобия:

$$\operatorname{Re} = \frac{\rho_0 L_0 u_0}{\mu_0} \qquad \operatorname{Re}_m = \frac{L_0 u_0}{\eta_0}$$
$$M_s = \frac{u_0}{c_s} \qquad M_A = \frac{u_0}{u_A} \qquad \beta = \frac{8\pi p_0}{B_0}$$

Мелкомасштабные значения чисел подобия:

Крупномасштабное течение, или постоянное среднее фоновое течение, приводит к постоянному значению числа Маха, в то время как локальные флуктуирующие вихри изменяют турбулентное число Маха, зависящее от локальных свойств мелкомасштабных турбулентных флуктуаций.

Параметры моделирования локальной межзвездной среды

Для исследования локальной межзвездной турбулентности, используется LES метод для решения системы уравнений сжимаемой МГД, в качестве подсеточной параметризации применяется расширенная модель Смагоринского для МГД случая, которая продемонстрировала достаточно точные результаты при различных числах подобия.

Начальные параметры: $\text{Re} \approx 2000$ $M_s \approx M_A \approx 2.2$

 $\operatorname{Re}_m \approx 200$ (амбиполярная диффузия)

Начальный изотропный турбулентный спектр для кинетической и магнитной энергии выбирался близким к спектру k^{-2} со случайными амплитудой и фазами по всем трем направлениям.

Расчетная область - трехмерный куб с размерами π^3

Свойства сжимаемости среды

 10^{0}

Затухание турбулентного мелкомасштабного числа Маха со временем. Наблюдается переход из сверхзвукового режима к дозвуковому. Дивергенция скорости, характеризующая сжимаемость среды, затухает и течения становится слабо сжимаемым со временем.

Намагниченность плазмы

Турбулентная плазменная бета:

Магнитозвуковые флуктуации ослабевают быстрее, чем альфеновские

Частицы плазмы, связанные с магнитными силовыми линиями, выталкиваются из их гиро-орбит вследствие того, что увеличивается доминирующая роль плазменного давления по сравнению с магнитной энергией. Это приводит к ослаблению намагниченности плазмы, следовательно и плазменных флуктуаций.

Турбулентные спектры - 1

Спектр кинетической энергии (**слева**). Нормализованный (умноженный на $k^{5/3}$) сглаженный спектр кинетической энергии (**справа**). Видно, что степенной показатель спектра близок к k^{-3} для большей части турбулентного каскада. Однако существует четко выраженный инерционный интервал колмогоровского типа $k^{-5/3}$

Турбулентные спектры - 2

Спектр плотности - сплошная линия, спектр флуктуаций плотности - пунктирная линия (слева). Нормализованный (умноженный на $k^{5/3}$ сглаженный спектр флуктуаций плотности (справа). На рисунке (слева) оба графика имеют показатель спектра близкий к k^{-3} Также существует четко выраженный инерционный интервал колмогоровского типа $k^{-5/3}$ для флуктуаций плотности (справа), что подтверждает наблюдательные данные.

Турбулентные спектры - 3

Изменение спектра энергии со временем

Анизотропная турбулентность

При низких значениях плазменной беты - анизотропия и нарушения симметрии вызваны в первую очередь магнитным полем. При больших значениях - каскады анизотропной турбулентности наблюдаются из-за распространения сжимаемых акустических мод, которые препятствуют спектральному переносу в локальном Фурье пространстве. Эти моды в МГД турбулентности могут быть возбуждены либо крупными масштабами, либо внешней скоростью фоновой турбулентностью.

$$tan^{2}\theta_{u} = 2\frac{G_{xx}^{u} + G_{xy}^{u} + G_{xz}^{u}}{G_{yx}^{u} + G_{yy}^{u} + G_{yz}^{u}}$$
$$tan^{2}\theta_{b} = 2\frac{G_{xx}^{b} + G_{xy}^{b} + G_{xz}^{b}}{G_{yx}^{b} + G_{yy}^{b} + G_{yz}^{b}}$$

- угол Шебалина (анизотропный угол).

Выводы

П Флуктуации плотности являются пассивным скаляром в поле скорости в умеренно сжимаемой МГД турбулентности и демонстрируют колмогоровский спектр

□ Показано уменьшение энергосодержащих крупных вихрей и инерционного интервала и увеличение диссипативного масштаба в спектре энергии.

□ Турбулентное число Маха уменьшается значительно со сверхзвукового режима турбулентности, где рассматриваемая среда сильно сжимаемая до дозвукового значения, характеризующее слабо сжимаемое течение.

□ В локальной межзвездной среде переход плазмы от существенно сжимаемого МГД турбулентного течения к умеренно сжимаемому течению в локальной межзвездной среде не только преобразовывает сверхзвуковое движение в дозвуковое, но также приводит к ослаблению намагниченности плазмы, так как плазменная бета увеличивается со временем, таким образом роль магнитной энергии падает по сравнению с давлением плазмы.

□ Крупномасштабное течение проявляет анизотропные свойства, в то время как мелкомасштабные структуры являются изотропными.

- Chernyshov A. A., Karelsky K. V., Petrosyan A. S. Subgrid-scale modeling in large-eddy simulations of compressible magnetohydrodynamic turbulence// Russian Journal of Numerical Analysis and Mathematical Modelling. 2006. Vol. 21. N. 1. P. 1-20
- 2. Chernyshov A. A., Karelsky K. V., Petrosyan A. S. *Large-eddy simulation of magnetohydrodynamic turbulence in compressible fluid//* Physics of Plasmas. 2006. V. 13. N. 3. P. 032304-032304-9.
- Chernyshov A. A., Karelsky K. V., Petrosyan A. S. Subgrid-scale modelling of compressible magnetohydrodynamic turbulence in heat-conducting plasma// Physics of Plasmas. 2006. V. 13. N. 10. P. 104501-104501-4.
- Chernyshov A. A., Karelsky K. V., Petrosyan A. S. Development of large eddy simulation for modeling of decaying compressible magnetohydrodynamic turbulence// Physics of Fluids. 2007. V. 19. N. 5. P. 055106-055106-14.
- 5. Chernyshov A. A., Karelsky K. V., Petrosyan A. S. *Assessment of subgrid-scale models for decaying compressible MHD turbulence//* Flow, Turbulence and Combustion. 2008. V. 20 N. 1 P. 21-35.
- Chernyshov A. A., Karelsky K. V., Petrosyan A. S. Modeling of compressible magnetohydrodynamic turbulence in electrically and heat conducting fluid using large eddy simulation// Physics of Fluids, V. 20, N 8, pp. 085106-085106-13, 2008
- Chernyshov A. A., Karelsky K. V., Petrosyan A. S. *Three-dimensional modeling of compressible magnetohydrodynamic turbulence in the local interstellar medium/*/Astrophysical Journal, 686:1137–1144, 2008

Турбулентность

- широкий диапазон временных и пространственных масштабов
 нет аналитического решения
- нелинейность
- трехмерность
- ✓ нелинейное слагаемое >> диссипативное слагаемое

I.Интегральный масштаб lII.Инерционный масштаб η III.Масштаб диссипации λ $\operatorname{Re} = \frac{\rho l v}{\mu}$ $l/\eta \sim \operatorname{Re}^{3/4}$ $l/\lambda \sim \operatorname{Re}^{1/2}$

$$\overline{\rho}\widetilde{u_ju_i} = \overline{\rho}(\widetilde{u_i} + \widetilde{u_i''})(\widetilde{u_j} + u_j'') = \overline{\rho}\left(\widetilde{\widetilde{u_i}\widetilde{u_j}} + \widetilde{\widetilde{u_i}u_j''} + \widetilde{\widetilde{u_j}u_i''} + \widetilde{u_i''u_j''}\right)$$

Нелинейные члены должны быть записаны, используя крупномасштабные величины:

$$\frac{\partial}{\partial x_j} \bar{\rho} \widetilde{u_j u_i} = \frac{\partial}{\partial x_j} \bar{\rho} \widetilde{u}_i \widetilde{u}_j + \frac{\partial}{\partial x_j} \left(\bar{\rho} \widetilde{u_j u_i} - \bar{\rho} \widetilde{u}_i \widetilde{u}_j \right) = \frac{\partial}{\partial x_j} \bar{\rho} \widetilde{u}_i \widetilde{u}_j + \frac{\partial}{\partial x_j} t_{ji}^u$$

Турбулентный тензор можно представить как:

$$t_{ij}^{u} = \bar{\rho}\left(\widetilde{u_{i}u_{j}} - \widetilde{u_{i}}\widetilde{u_{j}}\right) = \bar{\rho}\left(\widetilde{\widetilde{u_{i}}\widetilde{u_{j}}} - \widetilde{u_{i}}\widetilde{u_{j}}\right) + \bar{\rho}\left(\widetilde{\widetilde{u_{i}}u_{j}''} + \widetilde{\widetilde{u_{j}}u_{i}''}\right) + \bar{\rho}\left(\widetilde{\widetilde{u_{i}'}u_{j}''}\right)$$

Леонардовский Перекрестный Рейнольдсовский член член член

Динамическая процедура - 1

$$T^b_{ij} = \tau^{\overline{b}}_{ij} + L^b_{ij} \qquad T^u_{ij} = \tau^{\widetilde{u}}_{ij} + L^u_{ij}$$

Тестовые тензоры для нахождения констант (соотношения Германо)

Константа определяется динамически на каждом шаге.

Отрицательные значения соответствуют обратному направлению энергии

Динамическая процедура - 2

$$u_t = C_s \alpha^u_{ij} \ ($$
для $\tau^u_{ij})$

- общий вид

$$L_{ij}^{u} = \left(\frac{\widehat{\rho u_{i}} \ \overline{\rho u_{j}}}{\overline{\rho}}\right) - \frac{\widehat{\rho u_{i}} \ \widehat{\rho u_{j}}}{\widehat{\rho}} - \frac{1}{M_{a}^{2}} \left(\widehat{\overline{B}_{i}}\widehat{\overline{B}_{j}} - \hat{\overline{B}}_{i} \ \hat{\overline{B}}_{j}\right)$$

$$M_{ij}^{u} = \hat{\alpha_{ij}^{u}} \left(\hat{\tilde{S}_{ij}^{u}} - \frac{\delta_{ij}}{3} \hat{\tilde{S}_{kk}} \right) - \alpha_{ij}^{u} \left(\widehat{\tilde{S}_{ij}^{u}} - \frac{\delta_{ij}}{3} \tilde{S_{kk}} \right)$$

Угловые скобки обозначают пространственное усреднение

$$C_s = \frac{\langle L^u_{ij} \ M^u_{ij} \rangle}{\langle M^u_{ij} \ M^u_{ij} \rangle}$$

$$Z^{u} = \langle \langle T^{u}_{ij} - \tilde{\tau^{u}_{ij}} - L^{u}_{ij} \rangle^{2} \rangle$$

Тестовые методы для LES - 2

a posteriori