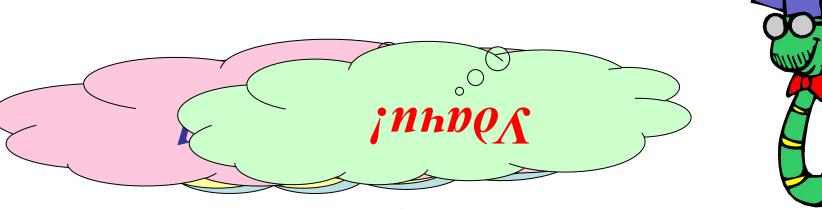


У.У. Сойер

Человеку, изучающему алгебру, часто полезнее решить одну задачу тремя различными способами, чем решать три-четыре различные задачи.

Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт.



УРОК – ЭКСКУРСИЯ в научно- исследовательский институт

Формула	Название формулы
$\sin 2x = 2\sin x \cos x$	
$\cos x \cos y + \sin x \sin y = \cos(x - y)$	
$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$	
$\sin s \sin t = \frac{\cos(s+t) + \cos(s-t)}{2}$	
$\cos(\frac{\pi}{2} + t) = -\sin t$	
$\sin(\pi+t)=-\sin t$	
$\sin(x+y) = \sin x \cos y + \cos x \sin y$	
$ctq\left(\frac{3\pi}{2}-t\right)=tqt$	
$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$	
$tq(x+y) = \frac{tqx + tqy}{1 - tqxtqy}$	3

Получи пропуск.

Вариант 1.

пешение?

Вариант 2.

- 1. Каково будет решение yравнения cos x = a npu a > a
- 2.При каком значении а
- yравнение cos x = a имеет
- 3. Какой формулой выражается это решение?
- На какой оси откладывается значение а при решении уравнения соs x = a?

- 1. Каково будет решение уравнения sin x = a при а > 1
- 2. При каком значении а yравнение sin x = a имеет pешение?
- 3. Какой формулой выражается это решение?
- На какой оси откладывается значение а при решении уравнения sin x = a?

Проверочная работа.

Вариант 1.

Вариант 2.

5. В каком промежутке находится arccos a? 5. В каком промежутке находится arcsin a?

6. В каком промежутке находится значение а? 6. В каком промежутке находится значение а?

7. Каким будет решение yравнения cos x = 1?

7. Каким будет решение yравнения sin x = 1?

8. Каким будет решение yравнения cos x = -1?

8. Каким будет решение yравнения sin x = -1?

Проверочная работа.

Вариант 1.

Вариант 2.

9. Каким будет решение yравнения cos x = 0?

9. Каким будет решение yравнения sin x = 0?

10. Чему равняется arccos (- a)?

10. Чему равняется arcsin (- a)?

11. В каком промежутке находится arctg a?

11. В каком промежутке находится arcctg a?

12. Какой формулой выражается решение уравнения tg x = a?

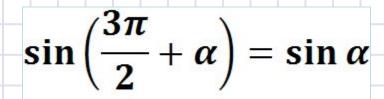
12. Какой формулой выражается решение уравнения $ctg \ x = a$?

Νo	Вариант 1.	Вариант 2.	
1.	Нет решения	Нет решения	
2.	$ a \leq 1$	$ a \le 1$	
3 •	$x = \pm \arccos a + 2\pi n, \ n \in \mathbb{Z}$	$x = (-1)^n \arcsin a + \pi k, \ k \in \mathbb{Z}$	
4.	Ha ocu Ox	На оси Оу	
5 •	$[0; \pi]$	$[-\pi/2; \pi/2]$	
6.	[-1; 1]	$\begin{bmatrix} -1; 1 \end{bmatrix}$	
7•	$x=2\pi n, n\in \mathbb{Z}$	$x = \pi / 2 + 2\pi k, \ k \in \mathbb{Z}$	
8.	$x = \pi + 2\pi n, n \in \mathbb{Z}$	$x = -\pi/2 + 2\pi k, \ k \in \mathbb{Z}$	
9.	$x = \pi / 2 + \pi n, \ n \in \mathbb{Z}$	$x = \pi k, k \in \mathbb{Z}$	
10.	$n-\arccos a$	- arcsin a	
11.	$(-\pi/2; \pi/2)$	$(0; \pi)$	
12.	$x = arctg \ a + \pi n, \ n \in Z$	$x = arcctg \ a + \pi k, \ k \in \mathbb{Z}$	

<u>Найди</u>

$$\cos(\alpha - \beta) = \cos(\alpha - \beta) = \sin(\alpha + \beta)$$

$$1 + ctg^2\alpha = \frac{1}{\cos^2\alpha}$$



$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

Найди ошибку.

$$1 \quad \operatorname{arcsm} 45^{\circ} = \frac{\sqrt{2}}{2}$$

$$2 \quad \arccos\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

3
$$\arcsin 3 = \arcsin 1.3 = \frac{\pi}{4} \cdot 3 = \frac{3\pi}{4}$$

$$4 \quad arctg \ 1 = \frac{\pi}{4}$$

$$\boxed{5} \quad arcctg\left(-\sqrt{3}\right) = \boxed{\frac{3\pi}{4}}$$

Установите соответствие:

$$| 1$$
 $\sin x = 0$

$$\begin{array}{|c|c|} \hline \mathbf{2} & \cos x = -1 \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline 4 & cos x = 1 \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|}\hline \mathbf{5} & \mathbf{tg} \ \mathbf{x} = \mathbf{1} \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|}\hline \textbf{6} & sin \ x = -1 \\ \hline \end{array}$$

$$\begin{array}{|c|c|}\hline 7 & cos x = 0 \\ \hline \end{array}$$

$$\frac{\pi}{2} + 2\pi k, \quad k \in \mathbb{Z}$$

$$2\pi k, k \in \mathbb{Z}$$

$$\pi k, k \in \mathbb{Z}$$

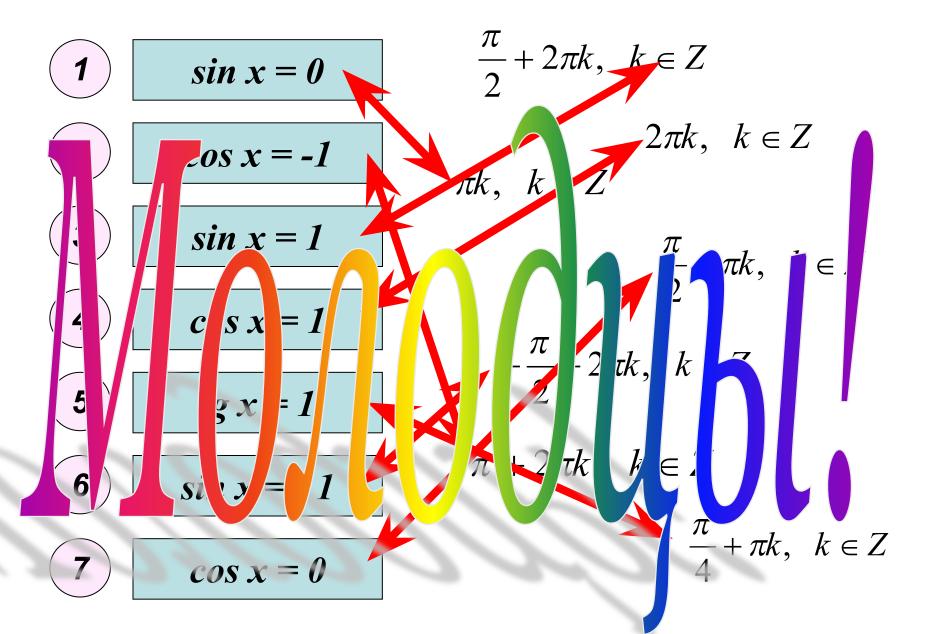
$$\frac{\pi}{2} + \pi k, \quad k \in \mathbb{Z}$$

$$-\frac{\pi}{2} + 2\pi k, \quad k \in \mathbb{Z}$$

$$\pi + 2\pi k$$
, $k \in \mathbb{Z}$

$$\frac{\pi}{4} + \pi k, \quad k \in \mathbb{Z}$$

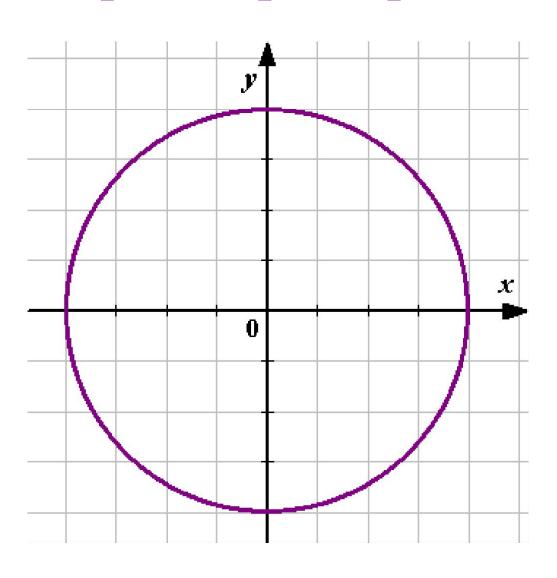
Установите соответствие:



Аукцион идей «Классификация уравнений»

N	Уравнение	№ метода	Методы
		решения	
1.	$2\sin^2 x + \cos^2 x = 5\sin x \cos x$		а) приведением к
2.	$\sin^2 x + \cos^2 2x + \sin^2 3x == 3/2$		квадратному
3.	$\cos x \sin 7x = \cos 3x \sin 5x$		б) как однородные
4.	$\sin^2 x - 2\sin x - 3 = 0$		в) понижением
5.	$\sqrt{2} \cos x - \sin x = 0$		порядка
6.	$\sin x + \sin 3x = \sin 5x - \sin x$		г) с помощью формул
7.	$\sin x - \sin 2x + \sin 3x - \sin 4x = 0$		суммы и
8.	$2\cos^2x + 3\sin^2x + 2$		разности
9.	$2\cos^2 x + 3\sin^2 x + 2\sqrt{3}\sin x \cos x = 3$		
10.	$\sin^2 x - \sqrt{3/3} \sin 2x = \cos^2 x$		
11.	$\sin x + \cos x = 1$		

Тренажер «Здоровья»



Проект «Методы решения уравнения sin x + cos x = 1 »

«Решай, твори, ищи и мысли» Эдисон

ПРОЕКТНАЯ ЛАБОРАТОРИЯ

1 способ (**разложения на множители**) – используя формулы двойного угла

2 способ (приведение к однородному уравнению второй степени) –

используя формулы половинного аргумента и понижения степени

используя формулы приведения)

3 способ (преобразование суммы тригонометрических функций произведение) –

4 способ (возведения в квадрат обеих частей уравнения)

ИССЛЕДОВАТЕЛЬСКАЯ ЛАБОРАТОРИЯ

КАФЕДРА «ВСПОМОГАТЕЛЬНОГО УГЛА» КАФЕДРА «УНИВЕРСАЛЬНАЯ»

§ 30 стр. 230-231

§ 31 стр. 233

Игра «Верите ли вы, что ...»

1. ...
$$\cos \pi = -1$$

2. ...
$$\sin(\pi/4) > 0$$

4. ...
$$\cos(-x) = -\cos x$$

5. ...
$$\sin(\pi/2) = 1$$

6. ... ctg
$$1 = \pi/4$$

$$7...cos 8\pi = 1$$

8. ... синус положительного угла может принимать отрицательное значение

9. ...
$$tg 7\pi = 0$$

12. ...
$$\frac{2}{3}\pi = 270^{\circ}$$

Решитьуравнение

$$a\sin x + b\cos x = c$$

Разделим обе части уравнения

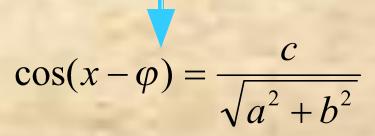
 $\mathbf{Ha} \qquad \sqrt{a^2 + b^2} \neq 0$

$$\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x = \frac{c}{\sqrt{a^2 + b^2}}$$

Введём вспомогательный угол по формулам:

$$\cos \varphi = \frac{b}{\sqrt{a^2 + b^2}}; \quad \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$

$$\cos x \cdot \cos \varphi + \sin x \cdot \sin \varphi = \frac{c}{\sqrt{a^2 + b^2}}$$



Простейшее тригонометрическое уравнение относительно

$$(x-\varphi)$$

$$\frac{4 \sin x + 3 \cos x = 1}{\sqrt{4^2 + 3^2}} \sin x + \frac{3}{\sqrt{4^2 + 3^2}} \cos x = \frac{1}{\sqrt{4^2 + 3^2}}$$

$$\frac{4}{5} SIN X + \frac{3}{5} COS X = \frac{1}{5}$$

$$\cos \varphi = \frac{3}{5} \sin \varphi = \frac{4}{5}$$

$$\cos \varphi = \frac{3}{5} \sin \varphi = \frac{4}{5}$$

$$\cos(x-\varphi) = \frac{1}{5} \qquad x - \varphi = \pm \arccos\frac{1}{5} + 2\pi n, n \in \mathbb{Z}$$

$$x = \varphi \pm \arccos\frac{1}{5} + 2\pi n, n \in \mathbb{Z}$$

$$\varphi = \arccos\frac{3}{5} \qquad x = \arccos\frac{3}{5} \pm \arccos\frac{1}{5} + 2\pi n, n \in \mathbb{Z}$$

Восстановить правую часть:

1.sinx
$$\pm \sqrt{3}\cos x = 1$$
; $\sin(x \pm \pi/3) = ?$

2.
$$\sin x - \cos x = \sqrt{2}$$
; $\sin(x - \pi/4) = ?$

3.
$$\sin x + \sqrt{3}\cos x = 4$$
; $\cos(x - \pi/6) = ?$

4.
$$\cos x - \sin x = \frac{1}{\sqrt{2}}$$
; $\cos(x + \pi/4) = ?$

1

2

1/2

Франсуа Виет, французский математик. По профессии – юрист. В 1591 году ввел буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений. В тригонометрии Виет дал полное решение задачи об определении всех элементов плоского или сферического треугольника по трем данным, нашел важные разложения cos nx u sin nx no степеням cosx и sinx.

Франсуа Виет

Леонард Эйлер (1707-1783)

Современный вид тригонометрия получила в трудах Леонарда Эйлера. Впервые в его работах встречаются символы $\cos x$, $\sin x$, tg x. На основании работ Эйлера были составлены учебники тригонометрии. По выражению П.Лапласа, Эйлер явился учителем математиков второй половины XVIII века.

И. Кеплер (1571 – 1630)

В XV веке немецкий астроном И. Мюллер издал работу

«Пять книг о треугольниках всех видов». В ней он опубликовал таблицу синусов.

Над составлением таблиц работали Николай Коперник, Иоганн Кеплер, Франсуа Виет.

И.П.До́лбня (1853 – 1912)

Ученый из Беларуси Иван Петрович До́лбня высказал идею определять тригонометрические функции синус и косинус на единичной окружности. Эта идея сейчас реализуется в современных учебниках алгебры.

Домашнее задание:

Спасибо за урок!

Необходимо выбрать соответствующий прием для решения уравнений. тригонометрических уравнений.

Уравнения сводимые к алгебраическим.

Bapuahm 1: $\cos 2x + \sin^2 x + \sin x = 0.25$

Bapuahm 2: $3\cos 2x - 5\cos x = 1$

Уравнения сводимые к алгебраическим

Разложение на множители

Bapuahm 1:
$$3\sin^2 x - \sqrt{3}\sin x \cos x = 0$$

Bapuahm 2:
$$3\cos^2 x + \sqrt{3}\sin x \cos x = 0$$

Уравнения сводимые к алгебраическим

Разложение на множители

Введение новой переменной (однородные уравнения)

Bapuahm 1: $3\cos^2 x - 5\sin^2 x - \sin 2x = 0$

Bapuahm 2: $\cos 2x + \cos^2 x + \sin x \cos x = 0$

Уравнения сводимые к алгебраическим

Разложение на множители

ведение новой переменной (однородные уравнения)

Введение вспомогательного аргумента.

Вариант 1:

$$\sin x - \sqrt{3}\cos x = 2$$

Вариант 2:

$$\sqrt{2}\cos x + \sqrt{2}\sin x = 1$$

Уравнения сводимь е к алгебраическим

Разложение на множители

введение новой переменной (однородные уравнения,

Введение вспомогательного аргумента.

Уравнения, решаемые переводом суммы в произведение

B1: $\sin x + \sin 3x = 4\cos^3 x$ **B2:** $\cos 3x - \cos 5x = \sin 4x$

Применение формул понижения степени.

Формулы квадрата половинных углов:

$$\sin^2\frac{\alpha}{2} = \frac{1-\cos\alpha}{2}$$

$$\cos^2\frac{\alpha}{2} = \frac{1 + \cos\alpha}{2}$$

$$\sin^2\alpha = \frac{1}{2}(1-\cos 2\alpha)$$

$$\sin^2 \alpha = \frac{1}{2} (1 - \cos 2\alpha)$$

$$\cos^2 \alpha = \frac{1}{2} (1 + \cos 2\alpha)$$

$2\sin^2 x + \cos 4x = 0$

B1:
$$\sin^2 x + \sin^2 2x + \sin^2 3x = 1,5$$

B2:
$$\cos^2 x + \cos^2 2x + \cos^2 3x = 1,5$$