Владимир Вежневец, Антон Конушин Александр Вежневец

Компьютерное зрение МГУ ВМК, Осень 2006

Пример

- После проведения социологического исследования, как выявить группы людей сходных мнений?
- Есть большая база данных изображений, требуется разделить их на группы
- Сегментация

Пусть, имеется набор наблюдений:

$$X^{l} = \{x_{1},...,x_{l}\}, X \in \mathbb{R}^{d}$$

 Требуется некоторым образом сделать суждения о наблюдаемых данных

 Трудно придумать более общую постановку, неправда ли?

- Кластеризация
 - Разбиение наблюдений на некоторые группы, с максимально близкими наблюдениями внутри групп и максимально далекими между

- Понижение размерности
 - Понижение размерности наблюдений с сохранением описательной силы

- Анализ плотности распределения
 - Получить аппроксимацию плотности распределения вероятности наблюдений или поиск их особых точек

Кластеризация

- К-средних
- Смесь нормальных распределений
- ...

Понижение размерности

- Метод главных компонент
- SOM
- ...
- Анализ плотности распределения
 - Аппроксимация плотности распределения через обучение с учителем
 - Сдвиг среднего для поиска экстремумов плотности распределения
 - ...

Отличие от классификации

- Множество ответов неизвестно
- Нет четкой меры качества решений
- Задачи поставлены крайне нечетко

Кластеризация Постановка задачи (1)

Пусть, имеется набор наблюдений:

$$X^{l} = \{x_{1},...,x_{l}\}, X \in \mathbb{R}^{d}$$

• Требуется разбить X^I на некоторые непересекающиеся подмножества (группы, кластеры), таким образом, что объекты внутри одной группы соотносились сильнее чем объекты из разных групп

Кластеризация Постановка задачи (2)

- Пусть, так же, имеется некоторая мера $\overline{D:X imes X} o R$, характеризующая «схожесть» между объектами
- Тогда, требуется найти некоторое разбиение:

$${C^{i}}_{1}^{k}: C^{i} \subset X^{l}, \underset{i=1}{\overset{k}{\boxtimes}} C^{i} = X^{l}; C^{i} \underset{i \neq j}{\overset{k}{\boxtimes}} C^{j} = 0$$

- Такое, что минимизируется $D(x_i, x_j); x_i, x_j \in C^p$
- И максимизируется $D(x_i, x_j); x_j \in C^p, x_i \in C^r; r \neq p$

Кластеризация Модель кластеров

 Под моделью кластеров будем понимать некоторое параметрическое семейство отображений из исходного пространства в множество индексов кластеров

$$C = \{c(x, \gamma) \mid c : X \times \Gamma \longrightarrow \{1, ..., k\}\}$$

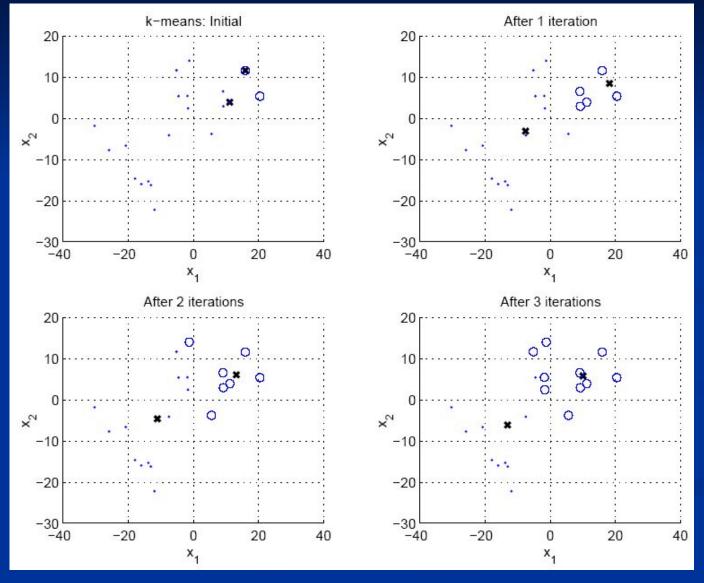
- Множество параметров, пространством поиска
- Нахождения параметров кластеризацией

Алгоритм К-средних

Кто хочет рассказать как он работает?

- 1. Случайным образом выбрать k средних m_i j=1,...,k;
- Для каждого x_i i=1,...,р подсчитать расстояние до каждого из m_i j=1,...,k,
- 3. Отнести (приписать) x_i к кластеру ј', расстояние до $m_{j'}$ минимально;
- 4. Пересчитать средние $m_i j=1,...,k$ по всем кластерам;
- 5. Повторять шаги 2, 3 пока кластеры не перестанут изменяться;

Иллюстрация

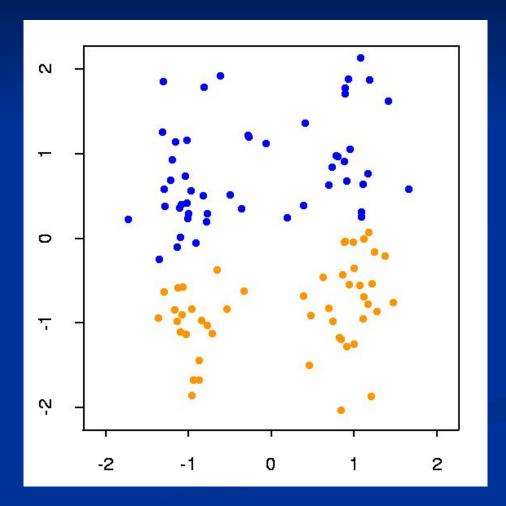


Алгоритм К-средних

- Мера схожести $D: X \times X \to R$
 - Евклидово расстояние в пространстве X
- Модель кластеров
 - Пространство поиска центры масс

Алгоритм К-средних

- Однопараметрический
 - Требует знания только о количестве кластеров
- Рандомизирован
 - Зависит от начального приближения
- Не учитывает строения самих кластеров



EM алгоритм Общая идеология

Пусть есть вектор неизвестных величин

$$\eta = (\eta_1, ..., \eta_p)$$

- и параметрическая модель с так же неизвестным параметром(ами)
- Пусть возможно рассчитать правдоподобие $P(\eta \mid \lambda)$
- Наша задача подобрать такие λ и η, чтобы правдоподобие было максимальным

EM алгоритм Общая идеология

- lacksquare Возьмем некоторые начальные приближения λ^0
- Итеративно t = 1... делаем два шага:
 - Expect: согласно текущему значению χ^{t-1} высчитываем наиболее вероятные значения

$$\eta^{t} = \arg\max_{\eta} \left(P(\eta \mid \lambda^{t-1}) \right)$$

Maximize: согласно текущем значениям η^t высчитываем новое значение χ^t максимизирующее функцию правдоподобия

$$\lambda^{t} = \arg\max_{\lambda} \left(P(\eta^{t} \mid \lambda) \right)$$

Остановимся когда правдоподобие стабилизируется

Кластеризация смесью нормальных распределений

 Будем считать, что наблюдения сгенерированы смесью нормальных распределений, то есть:

$$P(x \mid C^{i}) = \frac{P(x) = \sum_{i=1/2}^{k} P(x \mid C^{i}) P(C^{i})}{(2\pi P_{i}^{n/2} \mid \Sigma_{i}^{i} \mid -\frac{1}{2} N(\mu_{i}, \Sigma_{i}))} \exp \left(-\frac{1}{2} (x - \mu_{i})^{T} \Sigma_{i}^{-1} (x - \mu_{i})\right)$$

 Пусть k известно заранее, будем осуществлять кластеризацию ЕМ алгоритмом

$$\eta = (\eta_1, ..., \eta_l)$$
 - Индексы кластеров наблюдений $\lambda = \{\mu_i, \Sigma_i\}_{i=1}^k$

Кластеризация смесью нормальных распределений

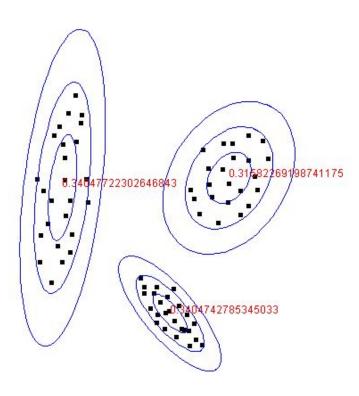
- Возьмем некоторые (случайные) начальные приближения $\lambda = \left\{ \mu_i, \Sigma_i \right\}_1^k$
- Итеративно для t = 1 ...:
 - Е: согласно текущему значению λ высчитываем наиболее вероятные значения индексов $\eta = (\eta_1, ..., \eta_l)$ кластеров для наблюдений из X^l

$$\eta_j^t = \arg\max_i \left(P(x \mid C^i) \right)$$

 М: согласно текущем значениям индексов пересчитаем параметры распределений (методом максимального правдоподобия)

Иллюстрация

Mean Likelihood = -10.212002301916018

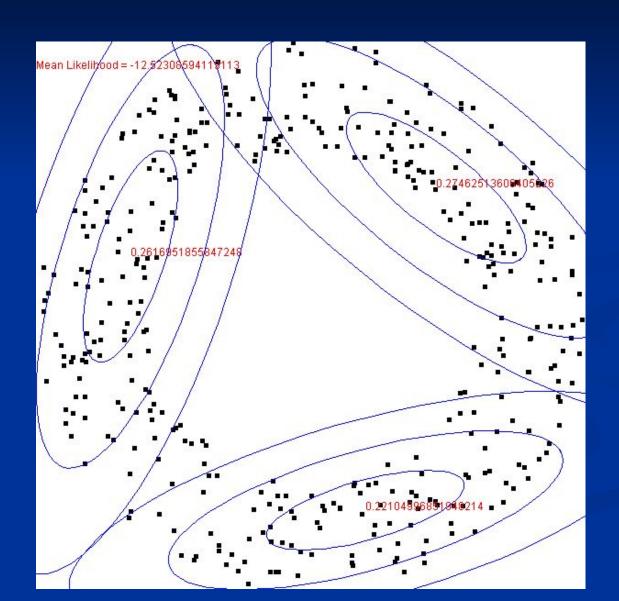


Кластеризация смесью нормальных распределений

- Плюсы
 - Более полная модель кластеров (больше итоговой информации)
 - Более качественная аппроксимация
 - Эффективная оценка качества кластеризации (правдоподобие)

- Минусы
 - Все равно некоторая ограниченная модель со строгой «геометрией»
 - Чувствительность к размерности и нормализации данных

Иллюстрация



Понижение размерности наблюдаемых данных

- Зачастую, наблюдаемые данные могут обладать высокой размерностью, но в действительности быть функцией всего нескольких скрытых (латентных) переменных
- Задачей понижения размерности является некоторое преобразование исходного пространства в пространство более низкой размерности без существенной потери информативности данных

Метод главных компонент

- Пусть имеется набор наблюдений $X^l = \{x_1, ..., x_l\}, X \in R^d$
- Будем строить новый базис в пространстве \mathbb{R}^d , таким образом что:
 - Центр координат совпадает с мат. ожиданием наблюдений (выборочным средним)
 - Первый вектор направлен таким образом, что дисперсия вдоль него была максимальной
 - Каждый последующий вектор ортогонален предыдущим и направлен по направлению максимальной дисперсии

Метод главных компонент Расчет базиса

- Сдвинем все данные таким образом, чтобы их выборочное среднее равнялось нулю
- Рассчитаем ковариационную матрицу:

$$\Sigma = \begin{pmatrix} \cos(x^{1}, x^{1}) & \cos(x^{1}, x^{2}) & \dots & \cos(x^{1}, x^{d}) \\ \cos(x^{2}, x^{1}) & \cos(x^{2}, x^{2}) & \dots & \cos(x^{2}, x^{d}) \\ \dots & \dots & \dots & \dots \\ \cos(x^{d}, x^{1}) & \cos(x^{d}, x^{2}) & \dots & \cos(x^{d}, x^{d}) \end{pmatrix}$$

Выборочное среднее

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X}) \cdot (Y_i - \overline{Y})}{(n-1)}$$

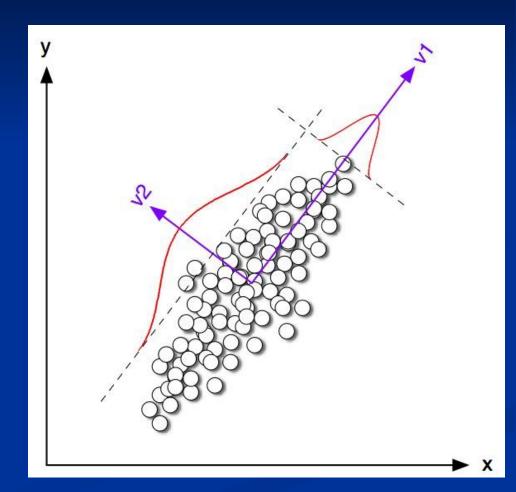
Метод главных компонент Расчет базиса

- Векторами нового базиса будут являться собственные вектора ковариационной матрицы
- Собственные числа значениями дисперсии наблюдений вдоль них

Иллюстрация

 Убирая базисные вектора с малыми значениями мы можем сократить размерность без существенной потери информации

*Вопрос: Почему это так?



Случай нормального распределения

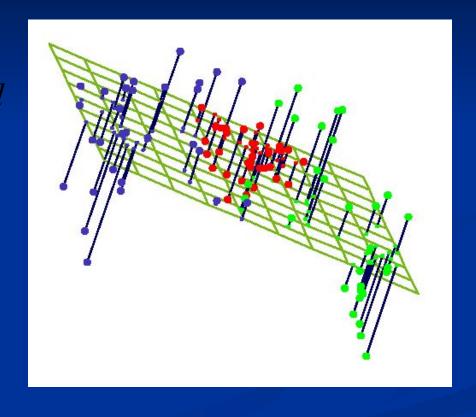
 Расстояние от центра распределения в новой системе координат равно:

$$\sqrt{(x-\overline{x})^T \sum_{y}^{-1} (x-\overline{x})}$$

- Так называемое расстояние Махалонобиса
- Пропорционально правдоподобию наблюдения

Метод главных компонент Связь с линейной аппроксимацией

Если рассмотреть систему проекций данных на первые $1 \le n \le d$ главных компонент, то мы получим систему наилучших линейных приближений данных (в смысле среднеквадратичного отклонения)



Метод главных компонент

- Следует применять:
 - Данные распределены нормально и требуется привести их к более удобной форме
 - Или предполагается, что данные содержатся в линейном многообразии исходного пространства и требуется выделить лишь его и сократить размерность
- НЕ следует применять:
 - Распределение данных произвольно и далеко от нормального
 - Данные нелинейные

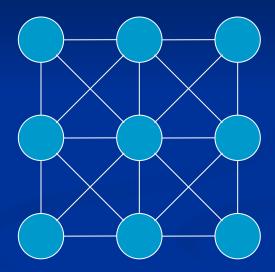
Самоорганизующиеся карты SOM (Карты Кохенена)

- Основная идея
 - вписать в данные сетку низкой размерности, и анализировать ее, вместо самих данных

SOM (Карты Кохенена) Модель сетки

- Матрица узлов $\overline{M}^{\mathit{KL}} = \left(m_{\mathit{kl}}\right)$
- Соседство 4 или 8 связность
- Каждому узлу соответствует точка в исходном пространстве

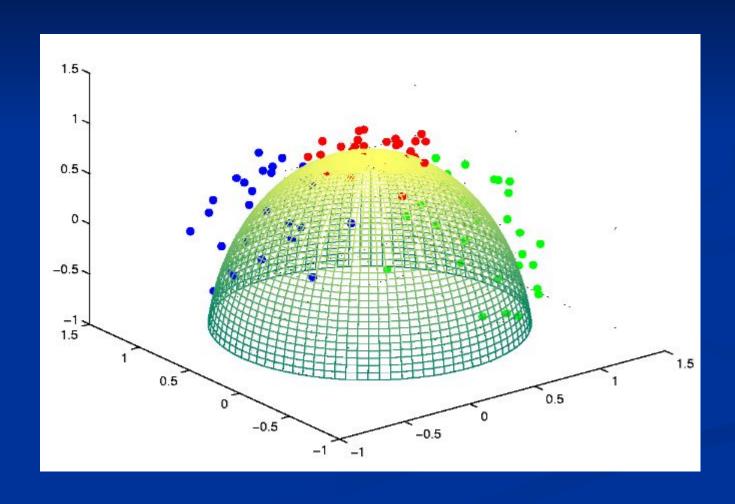
$$m_{kl} \in R^d$$



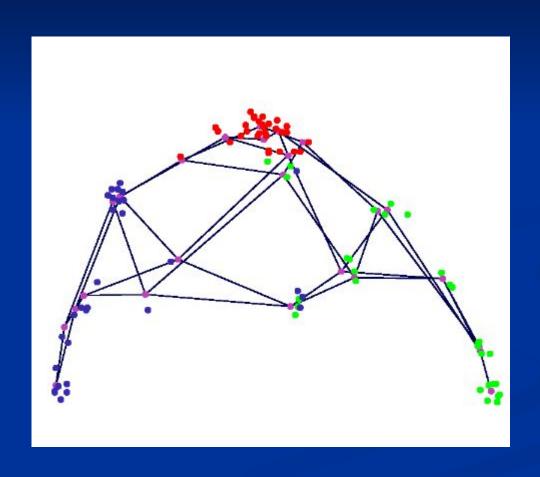
SOM (Карты Кохенена) **Алгоритм построения**

- Проинициализируем $ig(m_{_{ii}}ig)$ случайными значениями
- Далее, в случайном порядке будем предъявлять наблюдения и для каждого:
 - Вычисляем ближайший узел
 - Выберем множество соседей узла, такое что расстояние на сетке между ними меньше *r*
 - Для некоторого множества соседей узла, включая сам узел, изменяем их положения согласно: $m_{kl} \leftarrow m_{kl} + \alpha (x_i m_{kl})$
 - Повторяем процедуру уменьшая r и α пока сеть не стабилизируется

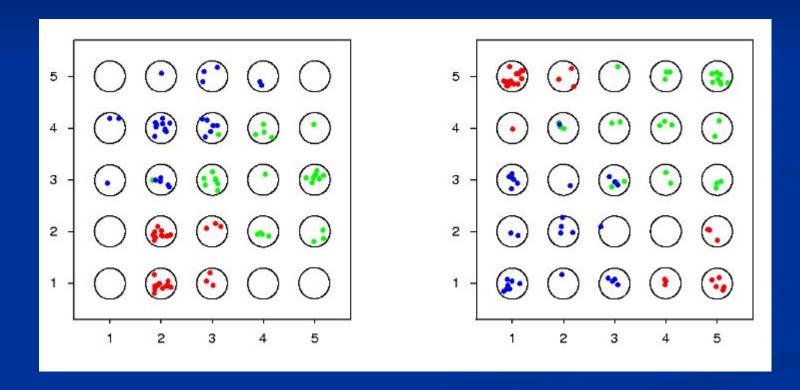
SOM (Карты Кохенена) Иллюстрация: исходные данные



SOM (Карты Кохенена) Иллюстрация: сетка



SOM (Карты Кохенена) Иллюстрация: проекции на матрицу



SOM (Карты Кохенена) Практическое использование

- Данные представляют некоторую поверхность,
 требуется сократить размерность
- Хорошо подходят для последующей кластеризации
- Moгут работать «online»
- В случае слишком сложных данных не информативны

Задание №2

- Каждому будут выданы
 - Данные (3 набора)
 - Алгоритмы классификации, реализованные в MatLab

Требуется

- Для каждого из наборов натренировать наилучший возможный классификатор (из выданных вам)
- Написать отчет (по форме лежащий на сайте) описывающий каким образом вы выбирали классификатор и настроили параметры
- Оценка складывается из:
 - Аккуратности и полноты отчета
 - Результатов работы Вами присланного классификатора на наших данных (часть выборки мы дали Вам, часть оставили себе)

Содержание отчета

- Применявшиеся методы
 - Список
- Алгоритм, по которому оценивались алгоритмы и выбирались параметры
- Результаты в виде
 - Графиков
 - Таблиц
- Выводы (кратко!)
 - Какой классификатор был выбран в итоге
 - Почему именно этот классификатор

Оформление решения

- Классификаторы
 - <Номер данных>_<Название метода>
 - Например 23_SVM
- Отчет
 - Файл в формате MS Word