Научный руководитель: Востриков А.А.

Синтез нейроподобных помехоустойчивых детекторов границ

магистрант Чернышев С. А. Группа № 4646М

Санкт-Петербургский государственный университет аэрокосмического приборостроения 2012

Пример обработки зашумленного изображения стандартными детекторами границ

Рис. 3 – Пример обработки чистого и зашумленного изображения log-фильтром

Цели магистерской диссертации

<u>Основная цель</u> - Исследование методологии, возможностей и параметров реализации нейронных сетей для задач обработки видеоизображений в реальном масштабе времени для встраиваемых систем управления, реализуемых средствами программируемых логических интегральных схем (ПЛИС).

Основные решаемые задачи:

1) Исследование методологии синтеза нейроподобных помехоустойчивых детекторов границ;

2) Разработка архитектуры нейроконтроллера, использующего видеоинформацию для принятия решений, разработка способов обмена информацией для управления параметрами функционирования и получения результирующей информации;

3) Исследование аспектов аппаратной реализации с помощью ПЛИС;

4)Создание макета, реализующего функции нейроподобного помехоустойчивого детектора границ в реальном масштабе времени.

Обработка изображения однослойным нейроноподобным детектором границ

Вектор показаний сенсоров S подается на вход нейрона. Нейрон состоит из двух компонент: линейной L и нелинейной A. Линейная часть нейрона L выполняет скалярное умножение вектора S на вектор весов W.

Обработка обучающего примера

Рисунок иллюстрирует процесс формирования исходной системы линейных уравнений, используемой для определения вектора весов W. С помощью матрицы изображений формируется матрица показаний сенсоров S. У этой матрицы количество строк равно количеству элементов матрицы описания исходного изображения или его фрагмента Ny*Nx.

Обобщение методики на набор примеров

ПРОЦЕДУРА ОБУЧЕНИЯ $\mathbf{W} = (\mathbf{S}^{\mathrm{T}} \mathbf{S} + \gamma \mathbf{E})^{-1} \mathbf{S}^{\mathrm{T}} \mathbf{F}$ СЛУЧАЙ ДВУХ ПРИМЕРОВ **Пример_1**: S_1 F_1 $F = F_{2}$ $S = \begin{vmatrix} S_1 \\ S_2 \end{vmatrix}$ **Пример_2** : S₂ F₂ $W_1 = (S_1^T S_1 + \gamma E)^{-1} * S_1^T F_1$ Обучение по одному примеру $W_{2} = (S_{1}^{T} S_{1} + S_{2}^{T} S_{2} + \gamma E)^{-1} * (S_{1}^{T} F_{1} + S_{2}^{T} F_{2})$ Обучение по двум примерам ПРОЦЕДУРА ДООБУЧЕНИЯ(- позволяет существенно улучшить

качество функционирования детектора) Введем :

 $Se_k = \sum S_k^T S_k$ - матрица предыдущего опыта с k примерами Fek = $\sum Sk^T F_k$ – вектор опыта с k примерами

$$W_{k+1} = (Se_k + S_{k+1}^T S_{k+1} + \gamma E)^{-1} * (Fe_k + S_{k+1}^T F_{k+1})$$

6

Норма L1 для выбора пороговых значений

Норма представляет собой средний уровень разницы, приведенный к количеству пиксель в изображении, что представляется естественным отобразить в обозначении этой нормы, являющейся сокращением L1 per pixel.

$$L1PP(Nx, Ny, Im1, Im2) = \frac{\sum_{i=0}^{Nx-1} \sum_{j=0}^{Ny-1} |Im1(i, j) - Im2(i, j)|}{Nx * Ny}$$

Оценка качества фильтрации с помощью нормы L1PP

Полученные весовые коэффициенты после обучения

	·						
	Н51 – пом	ехоустойчивый н	ейрофильтр крае	В			
(маска 5*5 / обучение по образцу S1/ширина края 1)							
	-0.073	0.134	-0.071	-0.0088			
-0.0014							
-0.069	-0.143	0.09	-0.148	-0.071			
0.137	0.094	0.371	0.091	0.145			
-0.083	-0.164	0.076	-0.159	-0.07			
0.0042	-0.066	0.151	-0.074	0.00037			
Вес для 26 элемента -1.543							
H52 – помехоустойчивый нейродетектор краев							
	(маска 5*5 / обуч	ение по образца	м S1и S2/ширина	края 1)			
	-0.037	0.048	-0.046	0.0011			
0.0047							
-0.045	-0.114	0.037	-0.112	-0.046			
0.03	0.049	0.539	0.044	0.039			
-0.054	-0.126	0.026	-0.12	-0.047			
0.013	-0.037	0.051	-0.038	0.0055			
Вес для 26 элемента -0.598							
H52 – помехоустойчивый нейродетектор краев							
(маска 5*5 / обучение по образцам S1и S2/ширина края 1)							
	-0.0435	0.0445	-0.0435	0.0064			
0.0064							
-0.0435	-0.1208		-0.1208	0.0435			
		0.0382					
0.0445	0.0382	0.5409	0.0382	0.0445			
-0.0435	-0.1208	0.0382	-0.1208	-0.0435			
0.0064	-0.0435	0.0445	-0.0435	0.0064			
	Bec 1	іля 26 элемента	-0.598				

Результаты тестирования однослойного нейрофильтра краев с нейродетекторов использованием H51 и Н52 представлены на следующем слайде. Н51 – обучение прямоугольниках, H52 на дообучение Н51 на кругах. Нижний детектор Н52 – симметризован. При этом использовалась активационная функция для которой были назначены пороги Tmax=255 и Tmin= 30.

8

Детектирование краев чистого а) и зашумленного b) изображения однослойным нейродетектором H52 (инвертированное изображение)

Детектирование краев чистого а) и зашумленного b) изображения однослойным нейродетектором H51 (инвертированное изображение) Разработка архитектуры нейроконтроллера. Обобщенная структурная схема

На рисунка буквами обозначены следующие компоненты:

А – видеокамеры;

Б – плата с ПЛИС;

В – аналитическая часть на ПЛИС;

Г – решающая часть на ПЛИС;

Д–JTAG UART;

Е – сеть Ethernet;

Ж – персональный компьютер (в качестве вычислительного ресурса и «учителя» нейроконтроллера).

Сжатие кадра видеопотока для передачи по Ethernet на «вычислительный ресурс»

- **1. Frametype (FT)** 1 байт (данное поле определяет назначение кадра;
- **2.** Serial number (SN) 4 байтов (данное поле содержит серийный номер узла на стадии инициализации сети и соответственно серийный номер узла с которым идет обмен);
- **3.** Status (S) 1 байт (содержит статус выполнения команды);
- **4.** Neuron Type (NT) 1байт (данное поле определяет размерность нейроподобного помехоустойчивого детектора границ, которая может быть 3x3+1 или 5x5+1);
- **5.** NumberNeuron (NN) 1 байт (данное поле определяет количество нейроподобных помехоустойчивых детекторов границ, которые будут обрабатывать входной видеопоток);
- **6.** NumberLayer's (NL) 2 байта (данное поле определяет количество слоев в нейроподобном помехоустойчивом детекторе границ);
- **7.** Data (данное поле содержит весовые коэффициенты нейроподобного помехоустойчивого детектора границ и пороговые значения. Длина поля вычисляется по предварительно полученным полям NN и NT, их перемножением);
- 8. CheckSum (CS) 4 байта (контрольная сумма кадра. Используется для проверки правильности принятого кадра и содержит сумму предыдущих байтов).

Структурная схема реализации аппаратной реализации нейрона 5х5+1

На параллельный сумматор ADD подаются значения с умножителей, а так же свободный весовой коэффициент Wcв. Поскольку в умножителях фирмы ALTERA предел перемножения – 4 пары значений, а необходимо выполнить 25 перемножений весовых коэффициентов со значениями пикселей входного видеопотока, организуется один дополнительный умножитель для перемножения одной пары значений.

Преобразование весов для представления на аппаратном уровне

Ниже приведем пример преобразования вещественных значений весовых коэффициентов в удобный вид для их использования в аппаратной реализации.

умножение на 4096 эквивалентно сдвигу влово на 12		Шаги преобразования	Шестнадцатеричный Значени вид в памя		ение хранится мяти ПЛИС
	1	$\frac{1}{2} \frac{((-1,2365 \times 10\ 000) \times 4096)/10\ 000 = -5064}{-5064 \times 138 = -698832} F$	EC38		
	2		F55630	\leftarrow	Операции
	3	Сдвиг вправо на 12 (-698832) = -171	F55	\leftarrow	на ПЛИС
Проверка					
		-1,2368 x 138 = -1	70,637		

Как видно результаты вполне идентичные. Для сокращения времени расчетов был написан скрипт в MATLAB, который производит необходимые вычисления и выводит результат в шестнадцатеричном виде.

IP-Core описывался на Verilog, умножитель, сдвиговый регистр, сумматор - сгенерировали при помощи MegaWizard и подключили в описываемое ядро.

Демонстрация рабочего стенда

Оценка задействованных ресурсов

Параметр	Значение			
	размерность 3 х3	размерность 5 х 5		
Количество использованных логи-	4932	4897		
ческих элементов	(около 4% от общего ресурса)	(около 4% от общего ресурса)		
Количество использованных ум-	22	54		
ножителей (DSP-блоков)	(около 4% от общего ресурса)	(около 10% от общего ресурса)		
Время обработки для получения	не более 20 нс			
одного пикселя изображения				
Время обработки одного полного	не более 8,3 мс			
видеокадра				

Оценка задействованных ресурсов интегральной схемы программируемой логики и быстродействия реализованного детектора границ

Заключение

Наиболее существенные результаты работы (научные, проектные):

1)Подтверждены эффективность применения нейронных сетей для задач обработки зашумленных изображений;

2)Проведена экспериментальная проверка методики синтеза помехоустойчивых детекторов границ;

3)Разработан арифметический блок для ПЛИС фирмы Altera Corp., осуществляющий детектирование границ в видеоизображении в реальном масштабе времени;

4)Создан научно-практический задел по направлению разработок систем управления реального времени встраиваемого класса, использующих видеоинформацию;

Основные практические результаты работы:

1) В работе был выполнен полный цикл создания нейроподобного помехоустойчивого детектора границ от синтеза до создания действующего макета, способного обрабатывать 25 кадров в реальном масштабе времени;

2) Предложена и реализована архитектура нейроконтроллера, использующего видеоинформацию для принятия решений, частью которого является синтезированный помехоустойчивый детектор границ;

3) Выбран и апробирован протокол обмена информацией между «вычислительным ресурсом» («учителем») и собственно нейроконтроллером.