
В пирамиде DABC все ребра равны a. Через О обозначим центр основания АВС О – точка пересечения медиан. рамиды. Найдите расстояние от т Применим свойство медиан: $M_3 \Delta DON$: медианы треугольника пересекаются в отношении 2 к $DN^2 = ON^2 + DO^2$; пересекаются в стис_ считая от вершины CO : ON = 2 : 1, Вся медиана CN- это 3 части. $\left(\frac{a\sqrt{3}}{2}\right)^2 = \left(\frac{a\sqrt{3}}{6}\right)^2 + DO^2$; NO = $\frac{a\sqrt{3}}{2}$: 3 = $\frac{a\sqrt{3}}{6}$ (это 1 часть)

CO = $\frac{a\sqrt{3}}{2}$: 3 * 2 = $\frac{a\sqrt{3}}{3}$ (это 2 части) $\frac{DO^2}{4}$ a $K | \underline{a\sqrt{6}}$ $a\sqrt{3}$ A $a\sqrt{3}$ $\widehat{o}a\sqrt{3}$ $CN = DN = \frac{a\sqrt{3}}{2}.$ N **60**⁰

Треугольники NOD и KLD подобны по двум углам: угол D – общий, \angle KLD и \angle O – прямые.

углам: угол D – общий,
$$\angle$$
 KLD и \angle O – прямые.
$$\frac{KL}{NO} = \frac{DK}{DN}; \quad \frac{KL}{a\sqrt{3}} = \frac{\frac{a\sqrt{6}}{6}}{\frac{a\sqrt{3}}{2}}; \quad KL = \frac{a\sqrt{3}}{6} \cdot \frac{a\sqrt{6}}{6} \cdot \frac{a\sqrt{3}}{2}; \quad KL = \frac{a\sqrt{3}}{6} \cdot \frac{a\sqrt{6}}{36} \cdot \frac{2}{a\sqrt{3}}; \quad KL = \frac{a\sqrt{6}}{18}.$$

