

Инженерия Требований

Алексей Сачик

Часть 1.

Введение и подходы стандартов

Факторы успеха проектов

Вовлечение пользователей 15.9%

Поддержка руководства 13.9%

Четкая и ясная постановка требований 13.0%

Хорошее планирование 9.6%

Реалистичные ожидания (соответствие требованиям) 8.2%

Частые контрольные точки 7.7%

Компетентная команда 7.2%

Владение требованиями 5.3%

Управление требованиями

повышает вероятность успешного завершения проекта

Причины провалов проектов

Неполные или неоднозначные требования

Низкое вовлечение пользователей в проект

Недостаточно ресурсов

Нереалистичные ожидания

Недостаточная поддержка руководства

Постоянно изменяющиеся, нестабильные требования

Плохое планирование

Проект перестает быть нужным

Размер и сложность проекта

The Standish Group, 1999

Требование

Утверждение,

которое идентифицирует эксплуатационные, функциональные параметры, характеристики или ограничения проектирования продукта или процесса, которое однозначно, проверяемо и измеримо. Необходимо для приемки продукта или процесса (потребителем или внутренним руководящим принципом обеспечения качества).

ISO/IEC 29148 Разработка требований

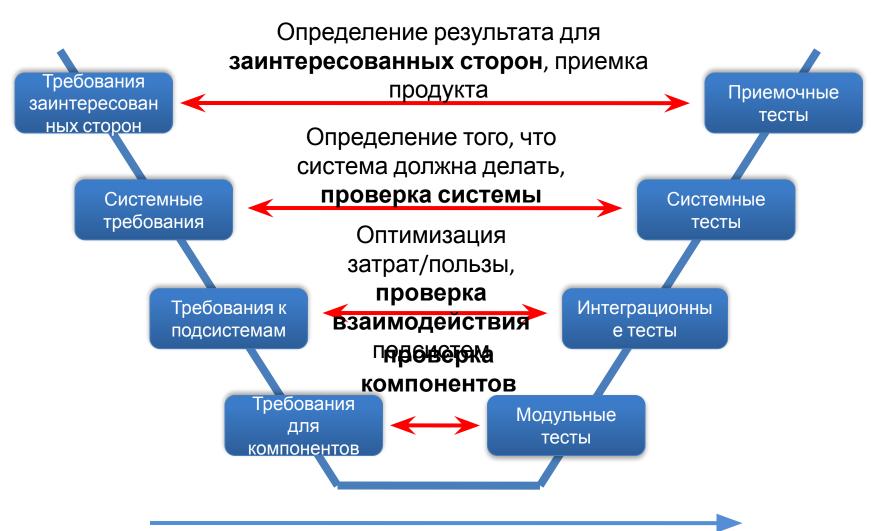
Требование

Потребность или ожидание, которое установлено, обычно предполагается или является обязательным.

ISO 9000:2008 Система менеджмента качества. Основные положения и словарь

Документально изложенный критерий, который должен быть выполнен, если требуется соответствие документу, и по которому не разрешены отклонения.

ISO 9000:2008 Система менеджмента качества. Основные положения и словарь


Требование

Независимое от концепции смешение нужд (потребностей), ожиданий, ограничений и иногда предпочтительных решений.

Kevin Forsberg

Стратегия проверки

Связь с архитектурным проектированием

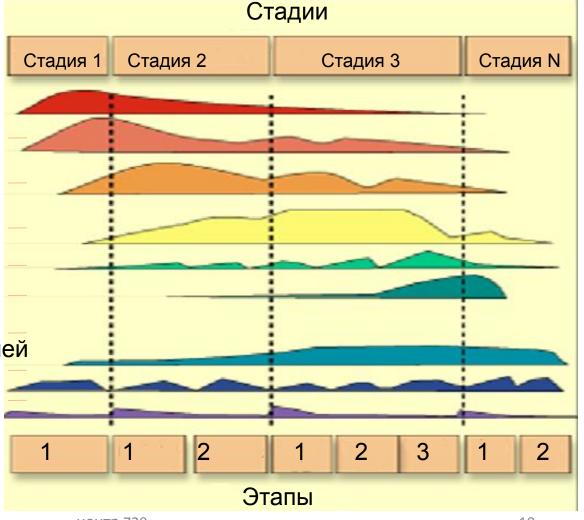
Архитектурное проектирование синтезирует решение, удовлетворяющее системным требованиям.

ISO/IEC 15288:2008 Системная и программная инженерия

Разделение функций системы, выявленные при анализе требований и приписывание их элементам архитектуры системы. Создание производных требования, необходимых при таком приписывании.

ISO/IEC 15288:2008 Системная и программная инженерия

Требования в жизненном цикле систем


Бизнес-моделирование

Требования

Анализ и дизайн

Реализация Тестирование Разворачивание

Управление конфигураци<mark>ей</mark> Управление проектом Управление средой

Часть 2.

Подходы стандартов

Обзор

- ISO/IEC 29148 Software and systems engineering
 - Life cycle processes Requirements engineering (Программная и системная инженерия Практики жизненного цикла Разработка требований)
- Является расширенным технических практик стандарта ISO/IEC 15288:
 - 15288:6.4.1-Определенение требований заинтересованных сторон
 - 15288:6.4.2-Анализ требований
 - другие технические практики

Синтаксис требований

[обстоятельства][субъект][действие][объект][ограничен ие]

<u>Пример</u>: Когда сигнал х получен [обстоятельства], система [субъект] должна установить [действие] разряд сигнала [объект] в течение 2 секунд [ограничение]

или

[обстоятельство][действие][значение]

<u>Пример</u>: В состоянии 1[обстоятельство] минимальный диапазон должен быть не менее [действие] 8 миль [значение]

Атрибуты требований

- Идентификатор
- Приоритет
- Критичность, важность
- Источник требования
- Причина, обоснование создания требования
- Сложность
- Оценка риска
- Тип
 - Функциональные
 - Требования к интерфейсам
 - Производительность
 - Ограничения
 - Технологические требования (законы, контрактные отношения, физическая безопасность и т.п.)
 - Нефункциональные
 - Требования качества
 - Требования эргономики

ISO/IEC 29148 Разработка требований

Характеристики отдельных требований

- 1. Необходимость
- 2. Абстрактность
- 3. Недвусмысленность
- 4. Согласованность с другими
- Полнота
- 6. Четкость, краткость
- 7. Выполнимость, осуществимость
- 8. Трассируемость
- 9. Проверяемость

Характеристики группы требований

- 1. Полнота
- 2. Согласованность с другими
- 3. Выполнимость (д/б по средствам, в рамках бюджета, сроков и т.п.)
- 4. Ограниченность

*

Практики стандарта

- ISO 29148:6.2 Определение требований заинтересованных сторон (Stakeholder requirements definition process)
- ISO 29148:6.3 Анализ требований (Requirements analysis process)
- ISO 29148:6.4 Появление практики разработки требований в других технических процессах (архитектурное проектирование, верификация, валидация)
- ISO 29148:6.5 –Управление требованиями

* центр 720

Проверка требований в СИ

Валидация – объективное доказательство соответствия функций системы требованиям заинтересованных сторон.

Верификация – подтверждение соответствия системы специфицированным требованиям

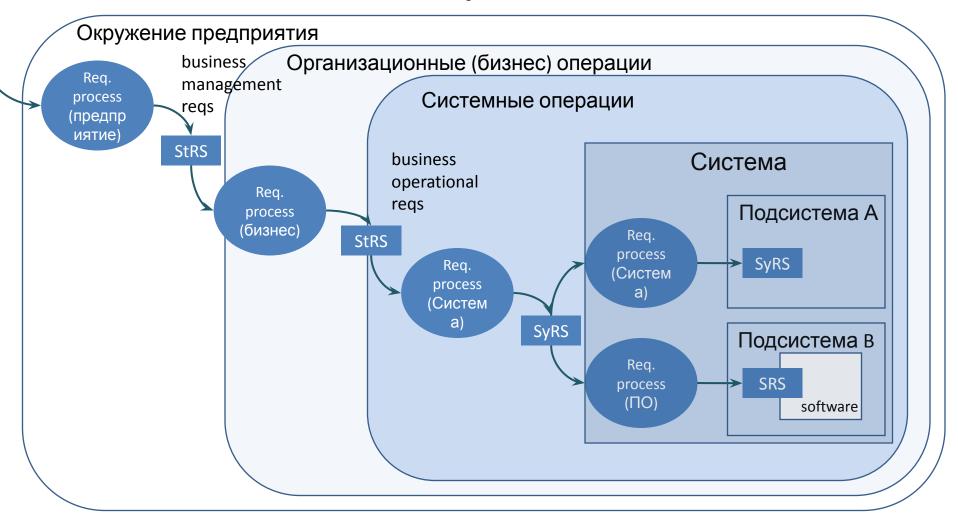
ISO/IEC 15288:2008 Системная и программная инженерия

Единицы сведений¹ (information items)

- Определяется требуемое содержание спецификаций требований и формат их представления:
 - Спецификация требований заинтересованных сторон (StRS)
 - Спецификация системных требований (SyRS)
 - Спецификация программных требований (SRS)
- Спецификации предназначены для представления разных типов требований единиц сведений


¹ Информационные единицы

Типовые типы требований в соответствии с возможностями системы (system scope)


Окружающа я среда

Тенденции рынка Законы Социальные отношения Культура

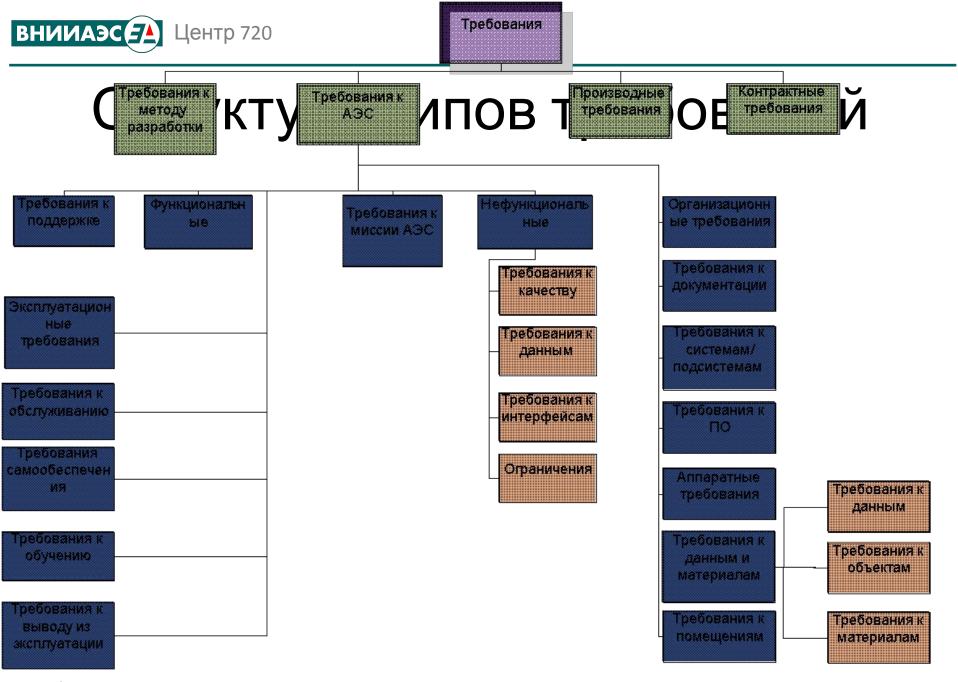
Последовательность создания спецификаций

1. Введение

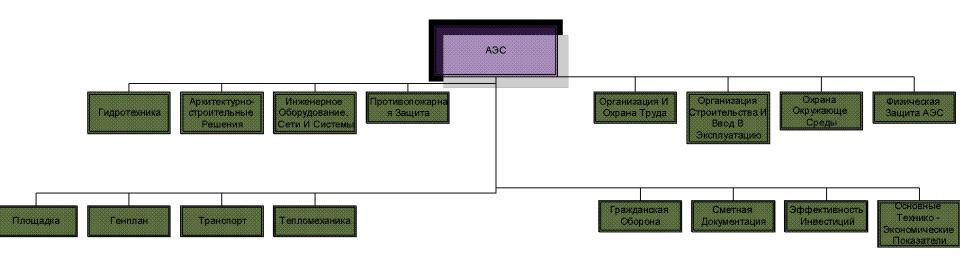
- 1.1 Назначение системы
- 1.2 Состав системы
- 1.3 Сокращения и аббревиатуры
- 1.4 Источники
- 1.5 Краткий обзор

2. Описание системы

- 2.1 Назначение системы
- 2.2 Режимы работы системы
- 2.3 Ключевые возможности
- 2.4 Основные условия
- 2.5 Основные ограничения
- 2.6 Пользовательские характеристики
- 2.7 Предположения и зависимости
- 2.8 Операционные сценарии


3. Возможности систем, ограничения и условия

- 3.1 Физические
 - 3.1.1 Конструктивные
 - 3.2.2 Прочность, долговечность
 - 3.2.3 Адаптируемость
 - 3.2.4 Экзогенные условия (относящиеся к окруж. среде)
- 3.3 Характеристика системы (эффективность, производительность)
- 3.2 Защищенность и безопасность системы
- 3.4 Управление информацией
- 3.5 Системные операции
 - 3.5.1 Человеческие факторы
 - 3.5.2 Ремонтопригодность
 - 3.5.3 Надежность
- 3.6 Политика и регулирование
- 3.7 Жизненный цикл самообеспечения системы


Часть 3.

Структуризация требований

Структура на основе проекта

Часть 4. Информационные пакеты

Основные поставщики

Вендор	Продукт
Dassault Systemes	ENOVIA Requirement Central
Siemens	Teamcenter Requirements Managements
IBM	Rational DOORS
Visuresolutions	IRqA

ENOVIA Requirement Central

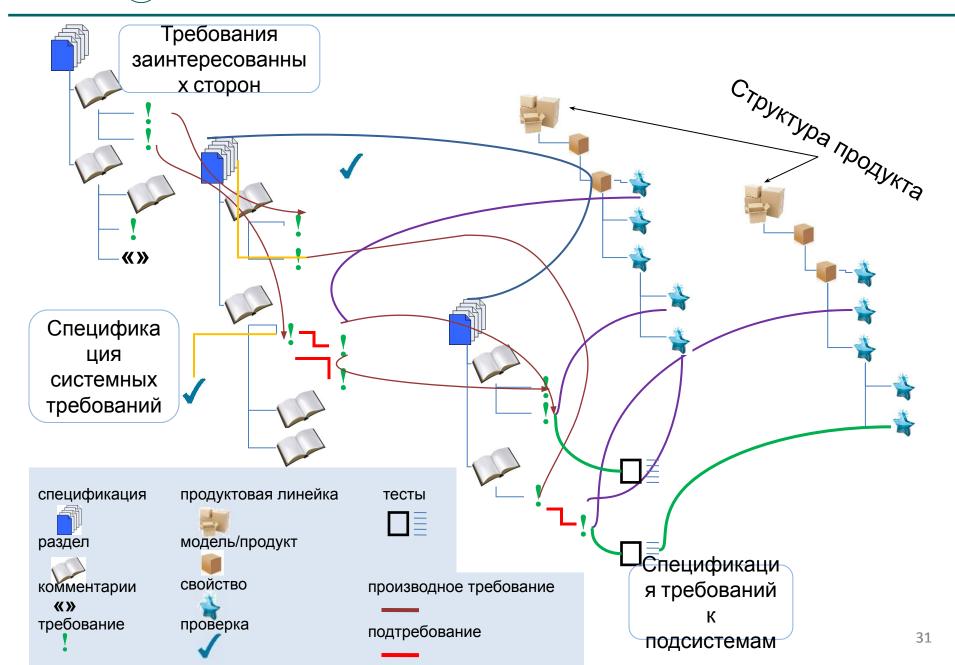
Предлагает ряд возможностей для выражения потребностей, которые должны быть выполнены с соблюдением ограничений разрабатываемой системы.

Позволяет фиксировать требования непосредственно через Requirement Central или через включенные компоненты работы с MS Office Word и Excel.

Является первым звеном в RFLP (Requirements – Functional – Logical - Physical) цепи, которая заканчивается в самой VPLM системе.

Teamcenter Requirements Managements (TcR)

- Служит для:
 - Идентификации требований и их связи с процессом проектирования, на начальных этапах разработки изделия
 - Распределения требований между отделами и проектными группами и системами изделия и управления ими
 - Управления требованиями во время выполнения программы


[°] центр 720 29

RFLP - трассируемость

Requirements Functional Logical Physical – подход, позволяющий построить и протестировать полнофункциональную виртуальную модель физического объекта еще до его создания.

* центр 720 30

IBM Rational DOORS

- Программный продукт предназначен для работы с требованиями на всем их жизненном цикле:
 - Выявление и фиксация требований
 - Анализ требований
 - Спецификация требований
 - Валидация и верификация требований
 - Управление требованиями

*

IRqA

Гибкая система для разработки и управления

Тонкий клиент для доступа из любой точки мира в любое время

Разработчик отчетов

Интеграция с другими системами управления требованиями

Часть 6.

Применение в проекте ВВЭР ТОИ

Работы по инженерии требований

- Сбор требований
- Анализ требований
- Связь структуры требований с функциональной структурой, логической архитектуры и электронным макетом

* центр 720 35

Спасибо за внимание!

Алексей Сачик ОАО «ВНИИАЭС»

<u>alexey.sachik@gmail.com</u> <u>sachik@vniiaes.ru</u>