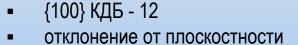

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ФАКУЛЬТЕТ РАДИОФИЗИКИ И ЭЛЕКТРОНИКИ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЕ УЧРЕЖДЕНИЕ ИНСТИТУТ ПРИКЛАДНЫХ ФИЗИЧЕСКИХ
ПРОБЛЕМ ИМЕНИ А.Н. СЕВЧЕНКО

ФОРМИРОВАНИЕ ВОДОРОДНО-ИНДУЦИРОВАННЫХ ДЕФЕКТОВ И ИХ ПРИМЕНЕНИЕ В ТЕХНОЛОГИЯХ МИКРО- И ОПТОЭЛЕКТРОНИКИ

Ф.Ф.Комаров, О.В. Мильчанин, А.М. Миронов

- 1. Создание структур кремний-на-изоляторе
- 2. Создание внутренних геттерирующих слоев в кремнии
- 3. Применение имплантации протонов для изоляции приборов на полупроводниках A³B⁵
- 4. Анализ наноразмерных структур методом резерфордовского обратного рассеяния


Перспективность использования структур кремнийна-изоляторе (КНИ) в микроэлектронике

- Использование для построения аппаратуры **с высокой стойкостью к радиационным излучениям**, в особенности к воздействию излучения с большой мощностью дозы
- Диэлектрическая развязка в КНИ приборах препятствует паразитному взаимодействию элементов, групп элементов и подложки, уменьшает число паразитных элементов и приводит к резкому повышению радиационной стойкости к импульсным воздействиям, тепло- и помехоустойчивости схем
- Развитие КНИ технологий дает начало и созданию высокотемпературных ИС (до 350°С), схем силовой электроники, открывает принципиальные возможности разработки схем трехмерной интеграции
- Перевод производства традиционных БИС и СБИС массового применения на современные КНИ структуры делает его в 1,5-2 раза более рентабельным, чем производство тех же СБИС на основе подложек монокристаллического кремния. Упрощается конструкция элементов КМОП и КБиКМОП ИС (упраздняются глубокие карманы и разделительные р-п переходы). В результате упрощения конструкции элементов ИС на 30% уменьшается площадь чипов и, соответственно, увеличивается примерно на 30% количество чипов на пластине

Формирование КНИ-пластин методом smart-cut

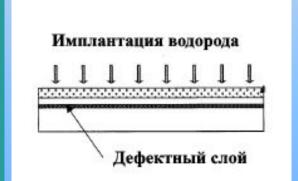
1. Отбор пластин

прогиб

ETO.035.206TY

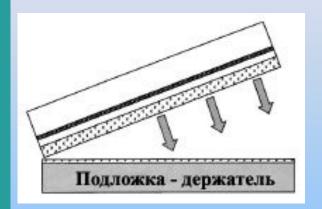
< 9 MKM

< 40 MKM



	температуры термообработки	800-1100 °C
	среда термообработок	сухой O ₂ , O ₂ +H ₂ O
•	толщины окисла на пластинах	20-300 HM

толщины окисла на пластинах


3. Ионная имплантация

•	ионы	H ₂ +
•	дозы имплантации	4-5х10 ¹⁶ ион/см ²
•	ток в пучке	500-600 мкА
•	энергия	80-100 кэВ
•	температура	50 °C

Формирование КНИ-пластин методом smart-cut

4. Очистка поверхностей и соединение пластин

Комбинированный метод подготовки гидрофильных поверхностей пластин - сочетание процедур плазменной обработки, химической и гидромеханической очистки

Отработана оригинальная методика подготовки химически чистых оксидированных поверхностей пластин с высокой степенью гидрофильности

Контроль качества связывания осуществлялся на просвет в ближнем ИК-диапазоне электромагнитного излучения.

5. Термообработки

 Низкотемпературный отжиг 80 	0-200 °C,	, до 24	часов
--	-----------	---------	-------

■ Финишный отжиг 800-1100 °C, 30-120 минут

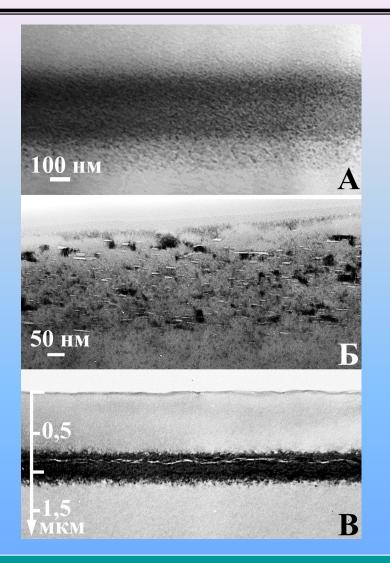


Рисунок 1 — ПЭМ фотографии дефектного слоя после имплантации ионов водорода (A) и отжига при 450 °C: 5 минут (Б) и 10 минут (В)

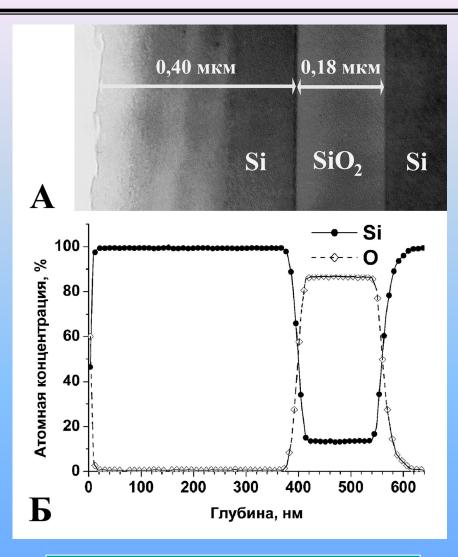
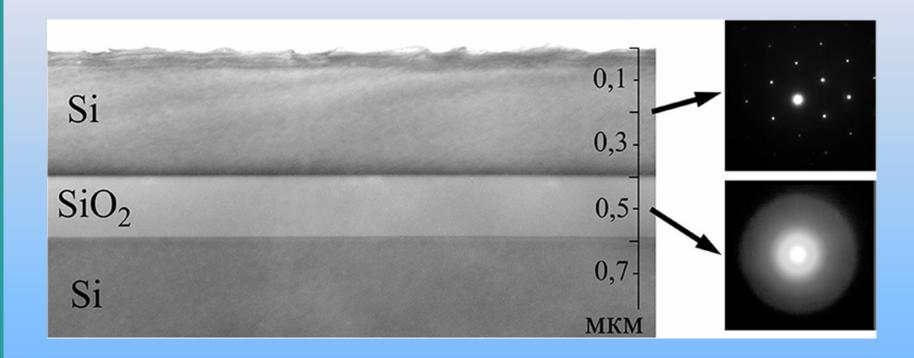



Рисунок 2 — ПЭМ фотография сечения КНИ-пластины (A) и ОЖЕ-профиль элементного состава (Б)

Формирование КНИ-структур

Формирование КНИ-пластин методом smart-cut

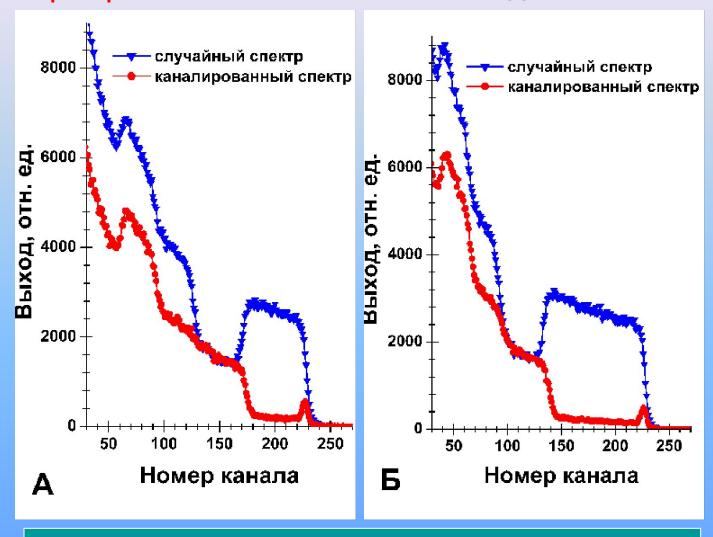


Рисунок 3 — Светлопольное ПЭМ – изображение структуры поперечного сечения КНИ-пластины и картины электронной дифракции от верхнего кристаллического слоя и аморфного захороненного оксидного слоя

Формирование КНИ-структур

Формирование КНИ-пластин методом smart-cut

Рисунок 4 — Случайные и каналированные спектры POP от КНИ-пластин: $\mathbf{A} - \mathrm{Si}(0,22\ \mathrm{mkm})/\mathrm{SiO}_2(0,18\ \mathrm{mkm})/\mathrm{Si}$, $\mathbf{b} - \mathrm{Si}(0,35\ \mathrm{mkm})/\mathrm{SiO}_2(0,18\ \mathrm{mkm})/\mathrm{Si}$

Формирование КНИ-структур

Формирование КНИ-пластин методом smart-cut

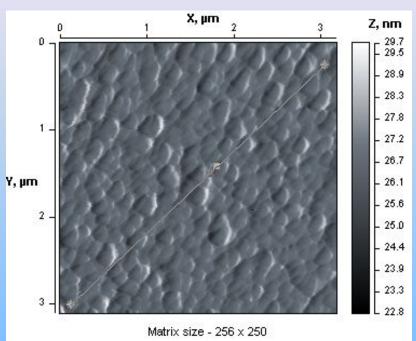
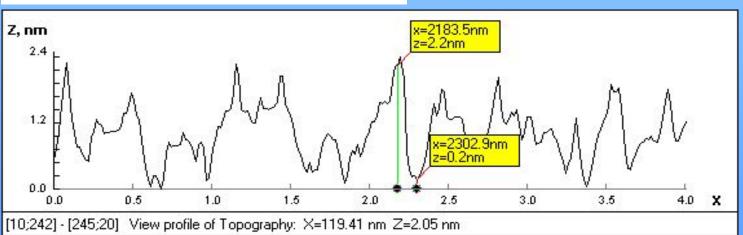
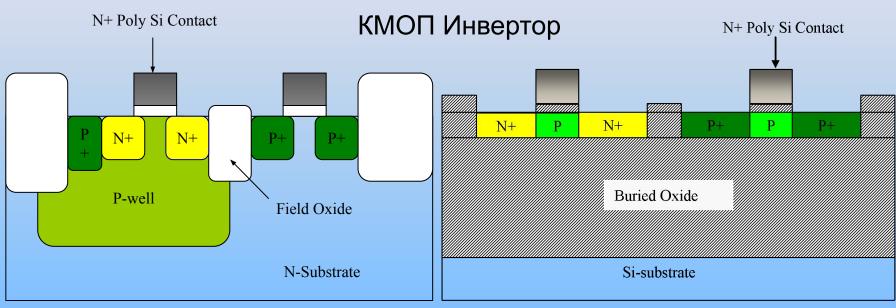



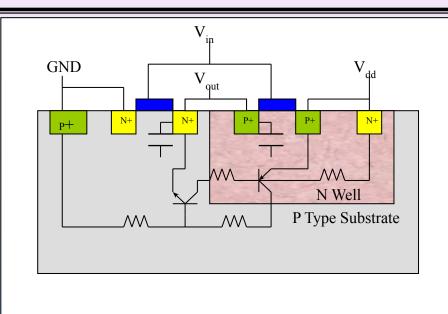
Рисунок 5 — Топография и профили шероховатости поверхности КНИпластины (метод ACM)

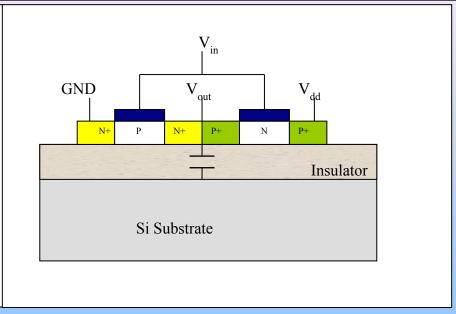
Si(0,35 MKM)/SiO2(0,18 MKM)/Si


Режимы термообработки:

- 1. 80 °С, 2 ч.; 120 °С, 1 ч
- 2. 500 °C, 30 минут
- 3. 1050 °C, 30 минут

Простой технологический процесс




Объемный кремний

Тонкопленочная КНИ структура

Рисунок 6 — Использование КНИ структур позволяет упростить технологический процесс - отсутствуют этапы литографии, легирования и диффузии для создания р-кармана

Объемный кремний

Тонкопленочная КНИ-структура

Рисунок 7 — Уменьшение паразитных емкостей

При использовании КНИ структур:

- Отсутствие паразитных емкостей между областями истока, стока и подложки;
- Отсутствие паразитной PNPN-тиристорной структуры

Высокая радиационная стойкость КНИ структур



Рисунок 8 — Формирование трека при попадании энергетической частицы

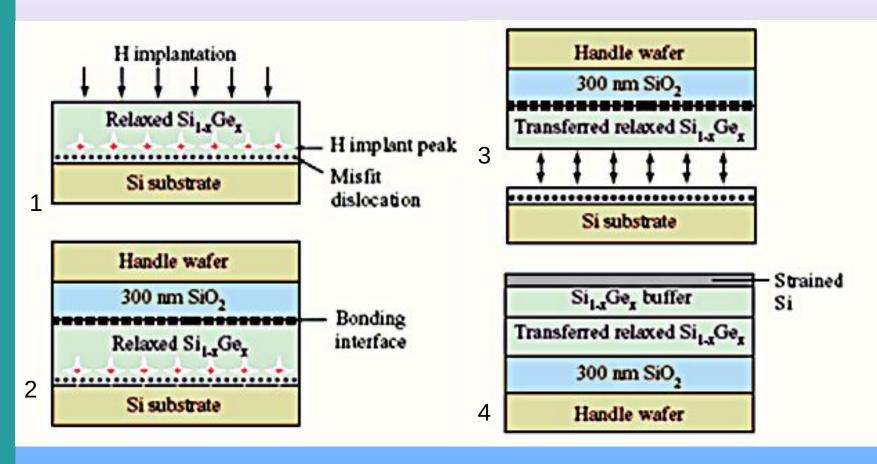
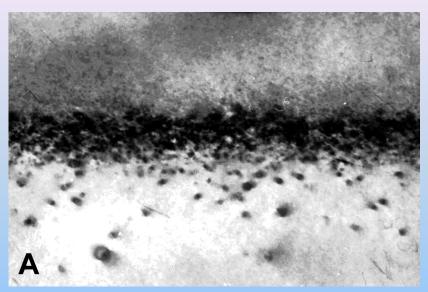



Рисунок 9 — Использование методики КНИ в SiGe - технологии

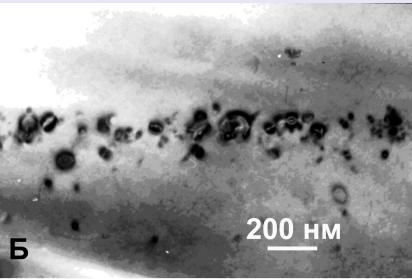
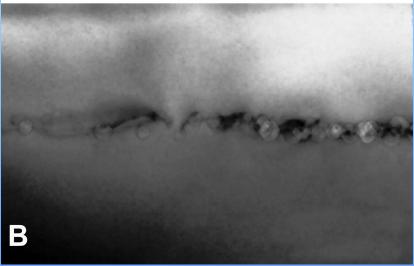
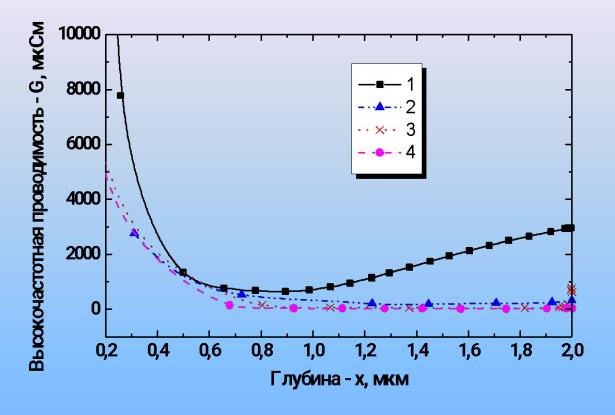


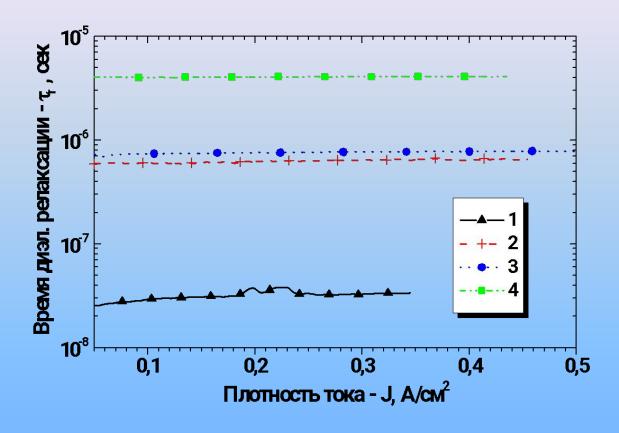
Рисунок 10 — Светлопольные ПЭМ изображения в поперечном сечении структуры внутреннего дефектного слоя в кремнии после имплантации (140 кэВ, 10^{16} см⁻²) ионов водорода (A) и последующего термического отжига: Б – 800 °C, 5 минут; В – 900 °C, 15 минут




Табл. 1 — Режимы формирования геттерирующих слоев

Nº	Тип подложки	Энергия и доза	Режимы	
	тип подлежии	имплантации Н [⁺]	термического отжига	
1	Si (2 мкм, 1 Ом·см)/(111)Cz-Si (КЭФ-0,01)	215 (H ₂ ⁺) кэВ, 2,5×10 ¹⁶ см ⁻²	1) 800 °C, 5 мин. 2) 800 °C, 30 мин. 3) 900 °C, 5 мин. 4) 1000 °C, 5 мин. 5) 900 °C, 15 мин.	
2	Si (2 мкм, 1 Ом·см)/(111)Cz-Si (КЭФ-0,01)	215 (H ₂ ⁺) кэВ, 3×10 ¹⁶ см ²	1) 800 °C, 5 мин. 2) 800 °C, 30 мин. 3) 900 °C, 5 мин. 4) 1000 °C, 5 мин. 5) 900 °C, 15 мин.	
3	(001)Cz-Si (КЭФ-4,5)	75 (H ⁺) кэВ, 2,5×1016 см ⁻²	900 °C, 30 мин.	
4	(001)Cz-Si (КЭФ-4,5)	75 (H ⁺) кэВ, 3,5×10 ¹⁶ см ²	900 °C, 30 мин.	

Табл. 2 — Режимы формирования тестовых структур


Nº	Проводимая операция	Описание режимов операции	Температура обработки
1	Формирование диодов Шоттки	Напыление пленки металла (Ni), методом термического испарения Формирование силицида никеля (NiSi) при термическом отжиге в среде сухого азота (450°C, 15 мин.)	< 50 °C 450 °C
2	Формирование контактных областей	1. Напыление пленки металла (AI), методом термического испарения 2. Вжигание алюминия для формирования омического контакта при термическом отжиге в среде сухого азота (450 °C, 15 мин.)	< 50 °C 450 °C

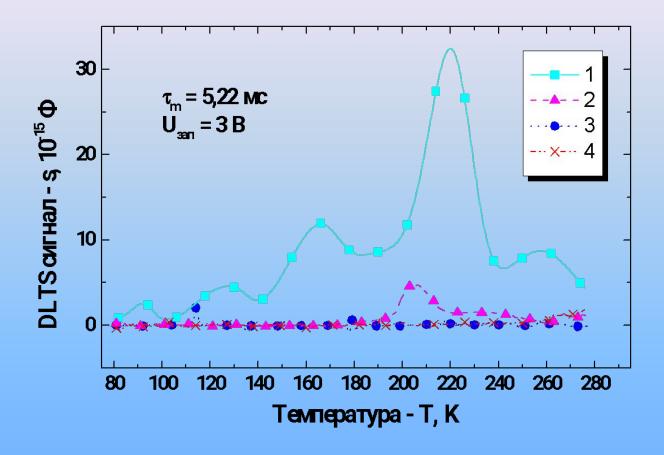

Рисунок 11 — Зависимость высокочастотной проводимости от глубины в обратносмещенных диодах Шоттки в Si без (1) и с внутренним геттером (2–4), полученным имплантацией ионов водорода (215 кэВ, 2.5×10^{16} см⁻²) и последующим термическим отжигом: 2 - 900 °C, 5 минут; 3 - 1000 °C, 5 минут; 4 - 800 °C, 30 минут

Рисунок 12 — Зависимость времени жизни неосновных носителей заряда от плотности тока обратносмещенного диода Шоттки в Si без (1) и с внутренним геттером (2–4), полученным имплантацией ионов водорода (215 кэВ, $2,5 \times 10^{16}$ см⁻²) и последующим термическим отжигом: 2 - 900 °C, 5 минут; 3 - 1000 °C, 5 минут; 4 - 800 °C, 30 минут

Рисунок 13 — DLTS спектры тестовых диодов Шоттки в образцах без (1) и с внутренним геттером (2–4), полученным имплантацией ионов водорода (215 кэВ, 2.5×10^{16} см⁻²) и последующим термическим отжигом: 2 - 900 °C, 5 минут; 3 - 1000 °C, 5 минут; 4 - 800 °C, 30 минут

Разработана физико-математическая модель и программное обеспечение, позволяющие исходя из заданной формы профиля распределения имплантированных ионов или радиационных дефектов по глубине мишени рассчитать технологические параметры (энергии и дозы) ионной имплантации.

Результирующий профиль распределения примеси при многократной имплантации ионов можно представить как суперпозицию профилей, полученных на отдельных этапах внедрения:

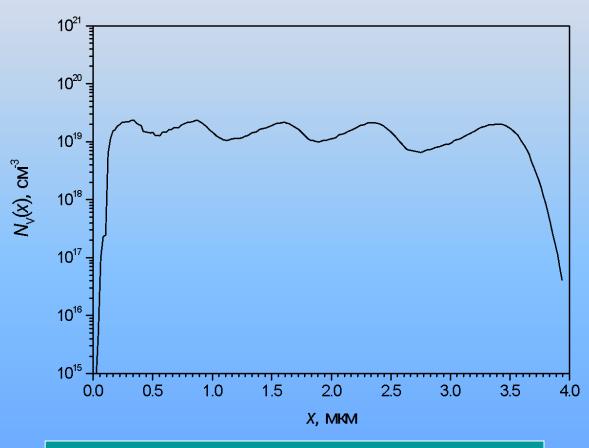
$$N(x) = \sum_{i} D_{i} n_{0}(x, E_{i})$$

где N(x) — результирующая концентрация вакансий; i — количество имплантаций; D_i — доза облучения ионами с энергией E_i . Функция $n_0(x,E)$ описывает распределение по глубине внедренных ионов, созданных моноэнергетическим ионным пучком. В случае непрерывного изменения энергии:

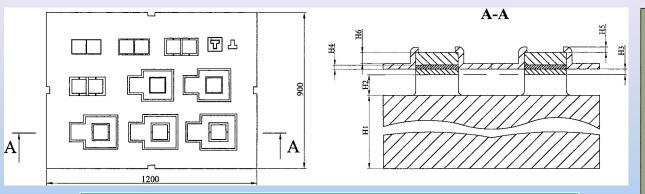
$$N(x) = \int_{E_{\min}}^{E_{\max}} g(E) n_0(x, E) dE$$

Здесь g(E) — распределение дозы облучения по энергии. Относительно искомой функции g(E) выражение для N(x) представляет собой уравнение Фредгольма первого рода. Для решения данного уравнения используется метод регуляризации: исходя из условия минимума сглаживающего функционала, задача сводится к уравнению Фредгольма второго рода, сеточным аналогом которого является система линейных уравнений:

$$\sum_{k} A_{k} K_{ik} g_{k} + \alpha g_{i} \delta_{ik} = W_{i}$$


где $K_{ik} = K(E_i, E_k)$ — интеграл перекрытия функций распределения $n_0(E_i)$ и $n_0(E_k)$; W_i — интеграл перекрытия моноэнергетического профиля $n_0(E_i)$ и заданного профиля N(x); A_k — веса интегрирования; α — параметр регуляризации. Система решается методом Гаусса. Дискретные дозы определяются интегрированием непрерывного спектра в выбранных энергетических диапазонах.

Для получения изоляции требуемого качества в полупроводнике A³B⁵ необходимо создать равномерное по толщине эпитаксиального слоя распределение дефектов структуры


Расчеты проводились исходя из условия минимизации интегрального отклонения полученных с помощью полиэнергетической имплантации ионов H^+ в GaAs распределений вакансий от $N_{\rm V} = 2,5 \times 10^{19}~{\rm cm}^{-3}$ на глубине до 4 мкм. Рассчитанные энергии и дозы ионов H^+ представлены в таблице:

Энергия, кэВ	Доза, 10 ¹³ см ⁻²
400	10,0
300	8,0
220	6,2
130	5,3
50	4,5

Рисунок 14 — Рассчитанное распределение вакансий в GaAs в результате имплантации ионов H⁺ с 5 энергиями.

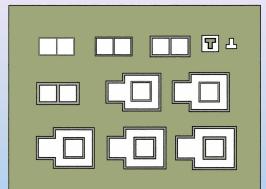


Рисунок 15 — Структура для оценки качества изоляции

ХАРАКТЕРИСТИКА	ВЕЛИЧИНА
Пробивное напряжение при толщине изолирующего слоя 4 мкм (В)	200
Ток утечки при напряжении 5 В, не более (нА)	10
Слоевое сопротивление (Ω· см)	10 ⁸
Толщина изолирующего слоя (мкм)	0.5 - 4.0

Увеличение проводимости с ростом частоты является признаком наличия прыжковой проводимости.

При увеличении температуры отжига прыжковая проводимость подавляется, при температуре более 380 °C зонный механизм проводимости становится основным, а роль прыжкового механизма снижается, что соответствует отжигу радиационных дефектов.

Отжиг при температурах 250-300 °C стабилизирует температурную зависимость проводимости в интервале рабочих температур интегральных схем (-50..+100 °C)

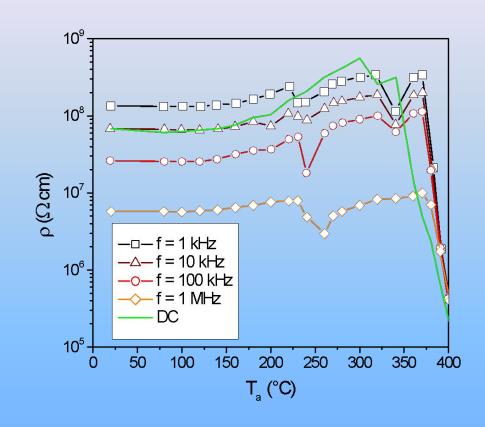


Рисунок 16 — Зависимость слоевого сопротивления от температуры отжига, измеренная при различных частотах переменного тока и при постоянном токе

РОР-анализ наноразмерных структур

Образцы кремния облучались ионами мышьяка с энергией 32 кэВ и дозой 1×10¹⁵ см⁻², затем термически окислялись (оценочная толщина SiO₂ — 4 нм) и подвергались быстрому термическому отжигу в течение 10 секунд при 1050 °C. На профиле виден острый пик с максимумом на глубине около 6 нм, отсутствовавший до отжига. Рассчитанное слоевое содержание мышьяка в образце с точностью не хуже 10% соответствует дозе легирования.

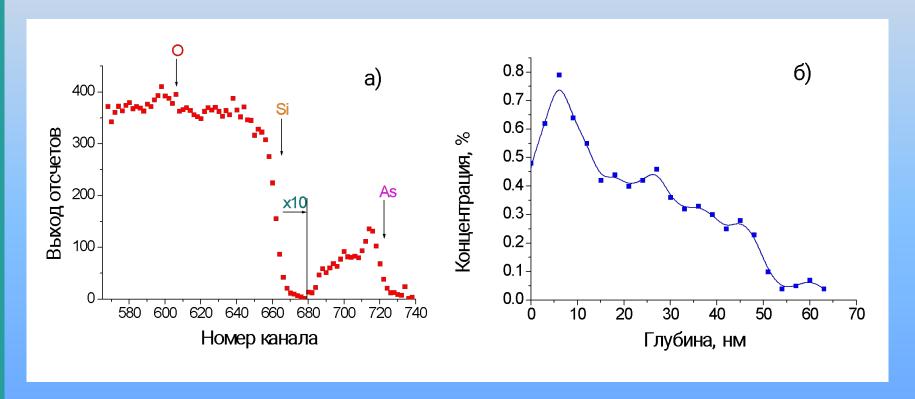


Рисунок 17 — Энергетический спектр РОР протонов с энергией 214 кэВ в отожженном образце (a) и рассчитанный по нему профиль распределения по глубине атомов мышьяка в кремнии (б)

ЗАКЛЮЧЕНИЕ

- ✓ Продемонстрирована возможность создания качественных КНИ-пластин с использованием стандартного технологического оборудования. С использованием многоступенчатого набора дозы имплантации водорода, а также дополнительных низкотемпературных отжигов, в работе показана возможность существенного снижения шероховатости поверхности КНИ-пластин (изготавливаемых в сочетании методов прямого связывания окисленных пластин и прецизионного ионного скола) вплоть до 2 нм;
- Разработаны основные режимы формирования в кремниевых пластинах внутреннего геттера, состоящего из узкого барьерного слоя, содержащего большое количество микропустот. Результаты исследований методами DLTS и C-V измерений свидетельствует о повышении структурного совершенства эпитаксиальных слоев кремния (за счет геттерирования) в тестовых диодах Шоттки. Установлено, что использование геттерирующих слоев позволяет на 2 порядка снизить концентрацию глубоких уровней в эпитаксиальных слоях кремния, связанных с наличием дефектов и нежелательных металлических примесей;
- ✓ Разработаны режимы формирования на пластинах GaAs n-типа межприборной изоляции высокого качества (термостабильность изоляции не менее 300 °C; пробивное напряжение при ширине изолирующего слоя не менее 4 мкм не менее 200 В; ток утечки при напряжении 5В не более 10 нА);
- ✓ Применение протонных пучков для низкоэнергетического РОР с использованием электростатического анализатора позволяет эффективно решать задачи анализа структур наноэлектроники.