БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ РАДИОФИЗИКИ И ЭЛЕКТРОНИКИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЕ УЧРЕЖДЕНИЕ ИНСТИТУТ ПРИКЛАДНЫХ ФИЗИЧЕСКИХ ПРОБЛЕМ ИМЕНИ А.Н. СЕВЧЕНКО

ФОРМИРОВАНИЕ ВОДОРОДНО-ИНДУЦИРОВАННЫХ ДЕФЕКТОВ И ИХ ПРИМЕНЕНИЕ В ТЕХНОЛОГИЯХ МИКРО- И ОПТОЭЛЕКТРОНИКИ

Ф.Ф.Комаров, О.В. Мильчанин, А.М. Миронов

- 1. Создание структур кремний-на-изоляторе
- 2. Создание внутренних геттерирующих слоев в кремнии
- Применение имплантации протонов для изоляции приборов на полупроводниках А³В⁵
- 4. Анализ наноразмерных структур методом резерфордовского обратного рассеяния

Перспективность использования структур кремнийна-изоляторе (КНИ) в микроэлектронике

- Использование для построения аппаратуры с высокой стойкостью к радиационным излучениям, в особенности к воздействию излучения с большой мощностью дозы
- Диэлектрическая развязка в КНИ приборах препятствует паразитному взаимодействию элементов, групп элементов и подложки, уменьшает число паразитных элементов и приводит к резкому повышению радиационной стойкости к импульсным воздействиям, тепло- и помехоустойчивости схем
- Развитие КНИ технологий дает начало и созданию высокотемпературных ИС (до 350°С), схем силовой электроники, открывает принципиальные возможности разработки схем трехмерной интеграции
- Перевод производства традиционных БИС и СБИС массового применения на современные КНИ структуры делает его в 1,5-2 раза более рентабельным, чем производство тех же СБИС на основе подложек монокристаллического кремния. Упрощается конструкция элементов КМОП и КБиКМОП ИС (упраздняются глубокие карманы и разделительные p-n переходы). В результате упрощения конструкции элементов ИС на 30% уменьшается площадь чипов и, соответственно, увеличивается примерно на 30% количество чипов на пластине

Создание структур кремний-на-изоляторе

Формирование КНИ-пластин методом smart-cut

1. Отбор пластин

- {100} КДБ 12
- отклонение от плоскостности
- прогиб

2. Создание структур SiO₂/Si

- температуры термообработки
- среда термообработок
- толщины окисла на пластинах

800-1100 °C сухой О₂, О₂+H₂O 20-300 нм

ЕТО.035.206ТУ

< 9 мкм
< 40 мкм

3. Ионная имплантация

- ИОНЫ
- дозы имплантации
- ТОК В ПУЧКЕ
- энергия
- температура

H₂⁺ 4-5х10¹⁶ ион/см² 500-600 мкА 80-100 кэВ 50 °С

4. Очистка поверхностей и соединение пластин

Комбинированный метод подготовки гидрофильных поверхностей пластин - сочетание процедур плазменной обработки, химической и гидромеханической очистки

Отработана оригинальная методика подготовки химически чистых оксидированных поверхностей пластин с высокой степенью гидрофильности

Контроль качества связывания осуществлялся на просвет в ближнем ИК-диапазоне электромагнитного излучения.

5. Термообработки

 Низкотемпературный отжиг 	80-200 °С, до 24 часов
 Скол по дефектному слою 	400-550 °C, 5-60 минут
• Финишный отжиг	800-1100 °C, 30-120 минит

Создание структур кремний-на-изоляторе

Рисунок 1 — ПЭМ фотографии дефектного слоя после имплантации ионов водорода (А) и отжига при 450 °C: 5 минут (Б) и 10 минут (В)

Рисунок 2 — ПЭМ фотография сечения КНИ-пластины (А) и ОЖЕ-профиль элементного состава (Б)

Рисунок 3 — Светлопольное ПЭМ – изображение структуры поперечного сечения КНИ-пластины и картины электронной дифракции от верхнего кристаллического слоя и аморфного захороненного оксидного слоя

Рисунок 4 — Случайные и каналированные спектры РОР от КНИ-пластин: **A** – Si(0,22 мкм)/SiO₂(0,18 мкм)/Si, **Б** – Si(0,35 мкм)/SiO₂(0,18 мкм)/Si

Matrix size - 256 x 250

Рисунок 5 — Топография и профили шероховатости поверхности КНИпластины (метод АСМ)

Si(0,35 мкм)/SiO2(0,18 мкм)/Si

Режимы термообработки: 1. 80 °C, 2 ч.; 120 °C, 1 ч 2. 500 °C, 30 минут 3. 1050 °C, 30 минут

Простой технологический процесс

Рисунок 6— Использование КНИ структур позволяет упростить технологический процесс - отсутствуют этапы литографии, легирования и диффузии для создания р-кармана

Применение КНИ структур

Объемный кремний

Тонкопленочная КНИ-структура

Рисунок 7 — Уменьшение паразитных емкостей

При использовании КНИ структур:

- Отсутствие паразитных емкостей между областями истока, стока и подложки;
- Отсутствие паразитной PNPN-тиристорной структуры

Высокая радиационная стойкость КНИ структур

Рисунок 8— Формирование трека при попадании энергетической частицы

Рисунок 9 — Использование методики КНИ в SiGe - технологии

Формирование внутреннего геттера

Рисунок 10 — Светлопольные ПЭМ изображения в поперечном сечении структуры внутреннего дефектного слоя в кремнии после имплантации (140 кэВ, 10¹⁶ см⁻²) ионов водорода (А) и последующего термического отжига: Б – 800 °C, 5 минут; В – 900 °C, 15 минут 8

Табл. 1 — Режимы	формирования	геттерирующих	слоев
-------------------------	--------------	---------------	-------

Nº	Тип подложки	Энергия и доза имплантации Н⁺	Режимы термического отжига
1	Si (2 мкм, 1 Ом∙см)/(111)Cz-Si (КЭФ-0,01)	215 (H₂ ⁺) кэВ, 2,5×10 ¹⁶ см ⁻²	1) 800 °C, 5 мин. 2) 800 °C, 30 мин. 3) 900 °C, 5 мин. 4) 1000 °C, 5 мин. 5) 900 °C, 15 мин.
2	Si (2 мкм, 1 Ом∙см)/(111)Cz-Si (КЭФ-0,01)	215 (Н₂ [⁺]) кэВ, З×10 ¹⁶ см ²	1) 800 °C, 5 мин. 2) 800 °C, 30 мин. 3) 900 °C, 5 мин. 4) 1000 °C, 5 мин. 5) 900 °C, 15 мин.
3	(001)Cz-Si (КЭФ-4,5)	75 (H⁺) кэВ, 2,5×1016 см ⁻²	900 °C, 30 мин.
4	(001)Cz-Si (КЭФ-4,5)	75 (H⁺) кэВ, 3,5×10 ¹⁶ см ²	900 °C, 30 мин.

Табл. 2 — Режимы формирования тестовых структур

Nº	Проводимая операция	Описание режимов операции	Температура обработки
	Фаринаранна	1. Напыление пленки металла (Ni), методом термического испарения	< 50 °C
1	формирование	2. Формирование силицида никеля (NiSi) при	
	диодов шоттки	термическом отжиге в среде сухого азота (450 °C, 15 мин.)	450 °C
	A	1. Напыление пленки металла (AI), методом	< 50 °C
	Формирование	термического испарения	
2	контактных	2. Вжигание алюминия для формирования	
	областей	омического контакта при термическом отжиге	450 °C
		ј в среде сухого азота (450 °C, 15 мин.)	

Рисунок 11 — Зависимость высокочастотной проводимости от глубины в обратносмещенных диодах Шоттки в Si без (1) и с внутренним геттером (2–4), полученным имплантацией ионов водорода (215 кэВ, 2,5×10¹⁶ см⁻²) и последующим термическим отжигом: 2 – 900 °C, 5 минут; 3 – 1000 °C, 5 минут; 4 – 800 °C, 30 минут

Рисунок 12 — Зависимость времени жизни неосновных носителей заряда от плотности тока обратносмещенного диода Шоттки в Si без (1) и с внутренним геттером (2–4), полученным имплантацией ионов водорода (215 кэВ, 2,5×10¹⁶ см⁻²) и последующим термическим отжигом: 2 – 900 °C, 5 минут; 3 – 1000 °C, 5 минут; 4 – 800 °C, 30 минут

Рисунок 13 — DLTS спектры тестовых диодов Шоттки в образцах без (1) и с внутренним геттером (2–4), полученным имплантацией ионов водорода (215 кэВ, 2,5×10¹⁶ см⁻²) и последующим термическим отжигом: 2 – 900 °C, 5 минут; 3 – 1000 °C, 5 минут; 4 – 800 °C, 30 минут

Разработана физико-математическая модель и программное обеспечение, позволяющие исходя из заданной формы профиля распределения имплантированных ионов или радиационных дефектов по глубине мишени рассчитать технологические параметры (энергии и дозы) ионной имплантации.

Результирующий профиль распределения примеси при многократной имплантации ионов можно представить как суперпозицию профилей, полученных на отдельных этапах внедрения:

$$N(x) = \sum_{i} D_{i} n_{0}(x, E_{i})$$

где N(x) — результирующая концентрация вакансий; *i* — количество имплантаций; D_i доза облучения ионами с энергией E_i . Функция $n_0(x, E)$ описывает распределение по глубине внедренных ионов, созданных моноэнергетическим ионным пучком. В случае непрерывного изменения энергии:

$$N(x) = \int_{E_{\min}}^{E_{\max}} g(E) n_0(x, E) dE$$

Здесь g(E) — распределение дозы облучения по энергии. Относительно искомой функции g(E)выражение для N(x) представляет собой уравнение Фредгольма первого рода. Для решения данного уравнения используется метод регуляризации: исходя из условия минимума сглаживающего функционала, задача сводится к уравнению Фредгольма второго рода, сеточным аналогом которого является система линейных уравнений:

$$\sum_{k} A_{k} K_{ik} g_{k} + \alpha g_{i} \delta_{ik} = W_{i}$$

где $K_{ik} = K(E_i, E_k)$ — интеграл перекрытия функций распределения $n_0(E_i)$ и $n_0(E_k)$; W_i интеграл перекрытия моноэнергетического профиля $n_0(E_i)$ и заданного профиля N(x); A_k веса интегрирования; α — параметр регуляризации. Система решается методом Гаусса. Дискретные дозы определяются интегрированием непрерывного спектра в выбранных энергетических диапазонах.

Для получения изоляции требуемого качества в полупроводнике A³B⁵ необходимо создать равномерное по толщине эпитаксиального слоя распределение дефектов структуры

Расчеты проводились исходя из условия минимизации интегрального отклонения полученных с помощью полиэнергетической имплантации ионов H⁺ в GaAs распределений вакансий от $N_v = 2,5 \times 10^{19}$ см⁻³ на глубине до 4 мкм. Рассчитанные энергии и дозы ионов H⁺ представлены в таблице:

Энергия, кэВ	Доза, 10 ¹³ см ⁻²
400	10,0
300	8,0
220	6,2
130	5,3
50	4,5

Рисунок 14 — Рассчитанное распределение вакансий в GaAs в результате имплантации ионов H⁺ с 5 энергиями.

Полиэнергетическая ионная имплантация

Рисунок 15 — Структура для оценки качества изоляции

ХАРАКТЕРИСТИКА	ВЕЛИЧИНА
Пробивное напряжение при толщине изолирующего слоя 4 мкм (В)	200
Ток утечки при напряжении 5 В, не более (нА)	10
Слоевое сопротивление (Ω· см)	10 ⁸
Толщина изолирующего слоя (мкм)	0.5 - 4.0

Увеличение проводимости с ростом частоты является признаком наличия прыжковой проводимости.

При увеличении температуры отжига прыжковая проводимость подавляется, при температуре более 380 °C зонный механизм проводимости становится основным, а роль прыжкового механизма снижается, что соответствует отжигу радиационных дефектов.

Отжиг при температурах 250-300 °C стабилизирует температурную зависимость проводимости в интервале рабочих температур интегральных схем (-50..+100 °C)

Рисунок 16 — Зависимость слоевого сопротивления от температуры отжига, измеренная при различных частотах переменного тока и при постоянном токе

РОР-анализ наноразмерных структур

Образцы кремния облучались ионами мышьяка с энергией 32 кэВ и дозой 1×10¹⁵ см⁻², затем термически окислялись (оценочная толщина SiO₂ — 4 нм) и подвергались быстрому термическому отжигу в течение 10 секунд при 1050 °C. На профиле виден острый пик с максимумом на глубине около 6 нм, отсутствовавший до отжига. Рассчитанное слоевое содержание мышьяка в образце с точностью не хуже 10% соответствует дозе легирования.

Рисунок 17 — Энергетический спектр РОР протонов с энергией 214 кэВ в отожженном образце (а) и рассчитанный по нему профиль распределения по глубине атомов мышьяка в кремнии (б)

- Продемонстрирована возможность создания качественных КНИ-пластин с использованием стандартного технологического оборудования. С использованием многоступенчатого набора дозы имплантации водорода, а также дополнительных низкотемпературных отжигов, в работе показана возможность существенного снижения шероховатости поверхности КНИ-пластин (изготавливаемых в сочетании методов прямого связывания окисленных пластин и прецизионного ионного скола) вплоть до 2 нм;
- Разработаны основные режимы формирования в кремниевых пластинах внутреннего геттера, состоящего из узкого барьерного слоя, содержащего большое количество микропустот.
 Результаты исследований методами DLTS и C-V измерений свидетельствует о повышении структурного совершенства эпитаксиальных слоев кремния (за счет геттерирования) в тестовых диодах Шоттки. Установлено, что использование геттерирующих слоев позволяет на 2 порядка снизить концентрацию глубоких уровней в эпитаксиальных слоях кремния, связанных с наличием дефектов и нежелательных металлических примесей;
- Разработаны режимы формирования на пластинах GaAs n-типа межприборной изоляции высокого качества (термостабильность изоляции не менее 300 °C; пробивное напряжение при ширине изолирующего слоя не менее 4 мкм не менее 200 В; ток утечки при напряжении 5В не более 10 нА);
- Применение протонных пучков для низкоэнергетического РОР с использованием электростатического анализатора позволяет эффективно решать задачи анализа структур наноэлектроники.