

Курс «Основы вакуумной техники»

Раздел «Геометризация физических величин в физическом вакууме, мировом эфире и Абсолютном пространстве»

Автор: к.т.н. Чижов Евгений Борисович

Рук. Курса в МГТУ им.Н.Э.Баумана: Деулин Евгений Алексеевич

Гехнические задачи:

- 1. Приведение понятий физики твёрдого тела к химическим понятиям;
 - 2.Создание геометрической интерпретации основным и производным негеометрическим величинам
- 3. Дать объяснение некоторым явлениям мега- макро-и микромира;

Пример обозначений точечных дефектов окисла 2х валентного металлав принятых в физике и химии приведён в таблице на следующем слайде

	Написание					
Наименование дефекта	Квазихимическое		Квазичастиц ы		Химическое	
	По Ризу	По Чуфаро ву	Наименован ие	Обозначен ие	Истинное	Каталитическое
Катионная вакансия	o € ⁺	V _M "	электроны провод имост и	ee	[O] _{n1} ²	$R_1^{2\square}$
Анионная вакансия	o∣€□	V_{o}	дырки	hh	$[Me]_{n2}^{2+}$	R_2^{2+}
Катионная вакансия с локализованной дыр кой (V центр)	p € ⁺	$V_{_{\mathrm{M}}}^{\square}$	полярон	eeh		R_1^{\Box}
Катионная вакансия с двумя локализован ными дырками (V'центр)	p ₂ € ⁺	V _M ^x	экситон	eh	$[O]_{n1}$	R_1^{\Box}
Анионная вакансия с локализованным элек троном (F центр)	e□ €□	V_{o}^{\Box}	полярон	hhe	[Me] _{n2} ⁺	R_2^+
Анионная вакансия с двумя локализован ными электронами (F'центр)	$e_2^{\square} \in$	V _o ^x	экситон	he	[Me] _{n2}	R_2^{\square}
Дефект по Френкелю	$e_2^{\Box} Me \Delta$	V _M . Me _i	экситон	eh	$[O]_{n1}^{2\square}Me_i^{2+}$	R^{\square}
Анионный дефект по Френкелю (H центр)	o €⁺	O _i	полярон	hhe	$[O_2]_{n1}^{\Box}$	R^+
Анионный дефект по Френкелю (F' центр)	o €⁺	O _i	биэкситон	$h_2 e_2$	$\left[O_{2}\right]_{n2}^{2\square}$	$R^{2\square}$
Дефект по Шотки			биэкситон	e_2h_2	$\left[O_{2}\right]_{n1}^{2\square}$	$R_{1}^{2\Box (R_{1}R_{1})} R_{1}^{R_{2}+}$

центрированную решетку [233,234]. В жидком состоянии положение индивидуальной молекулы строго коррелировано с положением ее соседей и координационное число воды составляет ~ 4,5. Известно большое количество работ, посвященных структуре воды и ее моделям. Из них можно отметить клатратные, кластерные, смешанные и перколяционные (непрерывные) [235 ÷ 242]

HIJOTHOCTO COCTOMININ MOJICKYJIDI BOZDI OODASYCT KYONACCKYR OODCINO-

- 233. *Meijer P.H.E., Kikuchi R., Papov P.* Phase diagram of water based on a lattice model. // Physica. 109A. 1981. P. 365 381.
- 234. *Meijer P. H. E., Kikuchi R., Van Royen T.* Extended lattice model of water; two-sublattice, two-orientation model. // Physica. 115A. 1982. P. 124-142.
 - 235. *Маленков Г. Г.* Структура воды. // Физическая химия: Современные проблемы. М.: Химия, 1984. С. 41-76. 242. *Давыдов А. С.* Солитоны в молекулярных системах. Киев: Наукова думка, 1984. 284 с.

Понятия массы, времени и др. основных физических величин не имеют никакой модели в действительности или сколько-нибудь действительных прототипов. Они представляют собой только символы, из которых мы конструируем свое познание мира.

ROTH ICCIDO DEMICEIDA —IV. Tak Obita COSHAHA HODAN CHETCHIA CHETCHIA LIVITIOOTI (CIT).

Введение системы СИ в 1960 г. разделило физическую науку на два лагеря: на техническую физику, которая приняла систему СИ и фундаментальную физику, которая до сих пор использует системы CGSE, CGSM, CGSEO, CGSµO и CGSB.

- 1. Псевдо-теллурическую систему LM, основанную на отождествлении силы и массы F=M.
- 2. Система LT Р. Бартини.
- 3. Унитарная система мер УСМ Беклемишева, в которой размерность скорости равна 0.
- 4. Система Хартри, характеризуемая соотношением e = m = h = 1.
- 5. Система релятивистских единиц, характеризуемая соотношением c = m = h = 1.

скорость света будет в системе К', поставив в эту скорость изменившеюся длину и время, ведь

теорию размерности никто не отменял.

1см вдоль оси X' в системе K' будет составлять (1см − vt)/ $\sqrt{1-v2/c2}$, а одна секунда(1с −vx/c2)/ $\sqrt{1-v2/c2}$.

Следовательно, скорость света вдоль оси Х' в системе К' будет составлять:

c (1cm - vt)/ (1c - vx/c2)

При v= 0 скорость света с' = c, т. е. скорость света в системе К' и К будут равны;

при v =0,5c, скорость света c' = - 0,5c2;

при v = c, скорость света c' = -c2.

Так как длина вдоль осей Y' и Z' не меняется, то скорость света вдоль этих осей при v = 0.9 с будет зависеть только от временной составляющей и равна 0.43 с, при v = c скорость света будет равна нулю.

Технические цели.

- **1. В настоящее время в физике** помимо 7 основных единиц используется громадное количество производных единиц. Например: 9 единиц энергии: 1эВ, 1Дж, 1эрг, 1 ккал/моль, 1см-1, 1К, 1 а. е, 1 Ry, 1МГц; 7единиц мощности, 7 единиц давления и т. д. Цель привести все основные и производные физические величины к одной геометрической величине —метру и тем самым сократить количество единиц. 2. В размерностях ускорения, и мощности используется понятия обратного квадрата [Т-2] и куба[Т-3] времени. Время считается одномерным. Цель выяснить геометрическую сущность этой загадочной единицы.
- 3. Физика использует дифференциальные уравнения во всех своих отраслях. Из 7 основных единиц только одна длина является математической величиной. При геометризации возможно, что какая-либо геометрическая величина может оказаться числом. Цель выявить такие величины.
- 4. Сравнить размерности физических величин с размерностью пространства и Технические цели.
- 1. В настоящее время в физике помимо 7 основных единиц используется громадное количество производных единиц. Например: 9 единиц энергии: 1эВ, 1Дж, 1эрг, 1 ккал/моль, 1см-1, 1К, 1 а. е, 1 Ry, 1МГц; 7единиц мощности, 7 единиц давления и т. д. Цель привести все основные и производные физические величины к одной геометрической величине —метру и тем самым сократить количество единиц.
- 2. В размерностях ускорения, и мощности используется понятия обратного квадрата [Т-2] и куба[Т-3] времени. Время считается одномерным. Цель выяснить геометрическую сущность этой загадочной единицы.
- 3. Физика использует дифференциальные уравнения во всех своих отраслях. Из 7 основных единиц только одна длина является математической величиной. При геометризации возможно, что какая-либо геометрическая величина может оказаться числом. Цель выявить такие величины.
- 4. Сравнить размерности физических величин с размерностью пространства и

Гехнические задачи:

- 1. Рассчитать численные значения физических величин и физических постоянных, приведя их в геометрические формы, и сравнить их между собой;
 - 2. Дать геометрическую интерпретацию основным и производным физическим величинам;
 - 3. Дать объяснение некоторым явлениям мега- макро-и микромира;
- 4. Проверить размерность уравнений Максвелла и А. Эйнштейна в системе

Сейчас, каждая наука имеет свою аксиоматику и свой язык:

- 1Математика-40 аксиом (арифметики,алгебры, геометрии, тригонометрии)
- 2. Физика 7 аксиом (физических величин)
- 3.Химия-

Геометризация физических величин

Основные принципы геометризации:

- 1. Физические непространственные величины являются пространственными величинами и подчиняются всем правилам алгебро геометрическим свойствам и действиям современной математики.
- 2. Наблюдаемая Вселенная глобально стационарна.
- 3. Следовательно, согласно 2 принципу внутренняя и внешняя энергия взаимодействующих многообразий должны иметь по сравнению друг с другом обратные размерности:
- 4. dim Ein = dim Eex-1 или dim Eex = dim Ein-1
- Размерности основных физических величин в системе L по сравнению с размерностями тех же величин в системе СИ

Система L	Система СИ
Длина – L	L
Macca – L-1	M
Время физическое - iL-1	Т
Сила электрического тока - L3	1
Термодинамическая температура - L3	$oldsymbol{\Theta}$
Сила света - L4	${f J}$
Количество вещества – L0	\mathbf{N}

1 моль воды равен 18 г. При испарении 18 г (~18 см3) воды получается 22400 см3 пара. Произошло расширение в ~ 1250 раз, которое и произвело работу, например поршня. При конденсации пара объём пара сокращается во столько же раз (образуется вакуум) и поршень движется в противоположную сторону, т. е происходит изменение объёма и совершается работа.

Проверка размерности уравнений А. Эйнштейна в системе L показала, что их размерность равна нулю. Уравнения написаны в дифференциальной форме, следовательно, все его решения в этой форме не корректны.

рад<mark>иус равен $r_{p,n}$ $\approx r_{p,n} \times hc/e^2 \approx 1,3210.$ 10^{-13} см. Кривизна $\rho = 1/$ $r_{p,n}$ $\approx 7,5700.10^{12}$ см $^{-1}$. Отсюда общая кривизна прототипа составит $\rho \approx 7,5700.10^{12}$ см $^{-1} \times 3,0914.10^{24} \approx 2,3402.10^{37}$ см $^{-1}$, тогда</mark>

1 $K\Gamma \approx 2,3402.10^{37} \text{ cm}^{-1}$, a 1 $\Gamma \approx 2,3402.10^{34} \text{ cm}^{-1}$. (5.1)

Более точно численное значение массы в системе L можно вычислить из соотношения заряда электрона и постоянной Планка —формула (4.5).

$$2 \times 4.8032.10^{\Box 10} \, \Gamma^{1/2} \, \text{см}^{3/2} \, \text{с}^{\Box 1} = 6.6262.10^{\Box 27} \, \Gamma \, \text{см}^2 \, \text{с}^{\Box 1},$$
 откуда $1\Gamma = 2,1018. \, 10^{34} \, \text{см}^{\Box 1} (5.2)$

Полученные численные значения массы, вычисленные двумя различными способами, близки друг к другу. На основании полученных результатов принимаем численное значение 1г в системе L, вычисленное из соотношения универсальных постоянных:

$$1\Gamma = \pm 2,1018.10^{34} \text{ cm}^{-1}$$
 (5.3)

Земли, которое в системе CGSE выражается постоянной тяготения $G = 6,6726.10^{-8}$ см³. г⁻¹.е⁻². Это соотношение означает, что при произвольно выбранных единицах измерения (длине L, массе M и времени T), обратное значение произведения квадрата времени на массу равно $6,6726.10^{-8}$, что равносильно зависимости:

$$6,6726.10^{\square 8} \text{ cm}^3.\Gamma^{\square 1}.c^{\square 2} = 1\text{cm}^6$$
 (5.5)

Подставляя в зависимость (5.5) значение массы равное 2,1018.10³⁴ см $^{\Box 1}$, получим значение 1с равное 1,7818.10 $^{\Box 21}$ см $^{\Box 1}$. Значения секунды, вычисленные двумя способами близки друг к другу. Принимаем численное значение одной секунды:

$$1c = i1,7818.10^{-21} \text{ cm}^{-1}.(5.6)$$

Секунда, вычисленная из эталона (сверхтонкое расщепление уровней атома Сz составляет:

$$1c = i3,6285.10^{-21} \text{ cm}^{-1}$$
.

в следующей зависимости от кинетической энергии в системе CGSE:

$$1K \approx 1,3807.10^{\Box 16}$$
 эрг. (5.7)

Подставляя численные значения 1г и 1с, выраженные в единицах длины, в зависимость (5.7) находим значение 1К в системе L:

$$1K \approx 9,1406.10^{59} \,\mathrm{cm}^3. (5.8)$$

Численное значение значение количества вещества

Количество вещества (1моль) содержит 6,0221.10²³ структурных элементов и является числом. Поэтому в системе L один моль будет соответствовать:

1моль =
$$6,0221.10^{23}$$
 см⁰. (5.9)

За единицу силы света (1 кд) принимают силу света в данном направлении от источника испускающего монохроматическое излучение 540.10¹² Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт на стерадиан, т.е. является мощностью. Значение одного Вт в системе L составляет □ i³3,7155.10¹⁰³ см⁴. Тогда одна кд в системе L будет равна:

1кд = $\square 3,7155.10^{103} \text{ cm}^4/683 \approx 5,4392.10^{100} \text{ cm}^4/\text{cp}$ (5.10)

$$\pm e = \pm 3,9080.10^{28} \text{ cm}^2 \quad (5.11)$$

Это значение электрического заряда соответствует $\sim 1,6022.10^{-19}\,\mathrm{K}$ л, откуда

$$1 \text{K}_{\text{J}} \approx \pm i^2 3,9080.10^{28} \text{ cm}^2 / 1,6022.10 \ ^{19} \approx \pm 2,4400.10^{47} \text{ cm}^2$$
 (5.12)

Сила электрического тока I в амперах связана с количеством электричества в кулонах следующей эависимостью:

$$IA = K_{\pi}/c$$
 (5.13)

Подставляя в зависимость (5.13) численные значения 1Кл из (5.12) и 1с. из (5.4) получаем:

$$IA \approx \pm 1,3700.10^{68} \text{ cm}^3$$
 (5.14)

Численные значения основных физических величин в системах CGSE и L

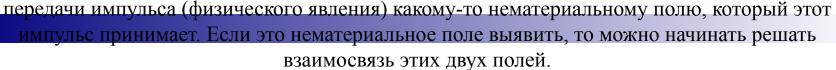
Физическая величина	Обозначение	Численные значения СИ L	
Длина	I	1 см	1 см
Macca	m	1 г	±2,1018.10 ³⁴ cм ^{□1}
Время	t	1 c	i1,7818.10 ^{□21} см ^{□1}
Термодинамическая температура	К	°K	9,1406.10 ⁵⁹ см ³
Количество вещества	М	1моль	6,0221.10 ²³ см ⁰
Сила света	J	1 кд	5,4392.10 ¹⁰⁰ см ⁴ /с
Сила тока	I	1A	$\pm 1,370.10^{68} \text{ cm}^3$

размерностями тех же величин в системе СИ

Наименование физической величины	Размерность в системе L	Размерность в системе СИ
Длина	L	L
Macca	±L ^{□1}	М
Время физическое	<i>i</i> L□1	Т
Сила электрического тока	±L ³	I
Термодинамическая температура	L ³	Θ
Сила света	L ⁴ /cp	J
Количество вещества	L ⁰	N

размерностями тех же величин в системе CGSE

Наименование физической величины	Размерность в системе L	Размерность в системе CGSE
Скорость	$\Box i \mathbb{L}^2$	LT ⁻¹
Ускорение	$\Box \dot{r}^2 L^3$	LT ⁻²
Частота периодического процесса	□ <i>i</i> L	T ⁻¹
Волновое число	L	L
Плотность	□L ^{□4}	L ^{□3} M
Импульс	□ <i>i</i> L	LMT [□] ¹
Сила	$\Box i^2 L^2$	LMT ^{□ 2}
Давление	\Box $i^2 \mathrm{L}^0$	L ^{□1} MT ^{□ 2}
Динамическая вязкость	□ <i>l</i> L□1	L ^{□1} MT [□] ¹
Кинематическая вязкость	iL ³	L ² T [□] 1.


Электрическая емкость	□L ¹	$L^{\square 2}M^{\square \ 1}T^4I^2$
Размерность производных фи	изических ведичин в си	стеме L по сравнению
размерностями тех же	величин в системе CGS	БЕ(продолжение)
Электрическая проводимость	\Box i L ²	$L^{\square 2}M^{\square \ 1}T^3I^2$
Напряженность магнитного поля	$\pm i^2 L^2$	L□¹I
Магнитный поток	\pmL^0	L ² MT ^{□2} I ^{□ 1}
Магнитная индукция	± <i>j</i> L□2	MT ^{□ 2} I ^{□ 1}
Индуктивность	$\Box eta \mathrm{L}^\Box \mathrm{3}$	L ² MT □ ² I □ ²
Абсолютная магнитная проницаемость	\Box $\not\cap$ L^\Box 4	LMT ^Q ² I ^Q ²
Магнитный момент	$\pm i^3 L^5$	L ² I
Световой поток	<i>i</i> ³ L⁴	JΩ
Световая энергия	L ³ /cp	TJ
Яркость, светимость, освещенность	<i>i</i> L ² /cp	L ^{□2} J
Cuona et l'unus que à na essure	а П2	1 □3 ∵ □1 > 1

Отруктура физического вакуума |0>|

В основе квантовой теории поля лежит гипотеза операторного возникновения частиц из «ничего» и уничтожения частиц в «ничего» [187]. Это «ничего» в квантовой теории поля носит название физического вакуума. Физический вакуум |0 > | наинизшее энергетическое состояние квантового поля, характеризующееся отсутствием какихлибо частиц [15. Т.1. С. 236]. Все квантовые числа в физическом вакууме: импульс, электрический заряд, угловой момент и др. —равны нулю. Но физический вакуум имеет энергию равную 1К или 1,38.10-23 Дж. Как это понять? Там, где нет, то что мы называем веществом или материей имеется энергия? Ответ только один физический вакуум имеет структуру, причём структуру неподвижную и его энергия аналогична потенциальной энергии. Если эту энергию привести в движение, то её можно использовать в технических целях. Вопрос только каким образом? Его структура разработана в работе в моей работе «Введение в философию математических пространств». Для этого пришлось разработать новую математику, изложенную в этой же книге. Кратко говоря, его структура состоит из самопересекающихся неподвижных чётных качественно-количественных чисел. Для того чтобы его показать и понять необходимо сначала рассказать суть этой математики.

Основные свойства физического вакуума:

- 1. Имеет жёсткую структуру твёрдого тела,
- 2.Имеет свойства газа.
- Эти два антиподных свойства говорят о том, что физический вакуум состоит из двух подпространств.
- Его структуру можно сравнить с каркасом строящегося дома. Каркас неподвижен, стен ещё нет(структура1), а между балками каркаса гуляет ветер (структура2).
- Если эту энергию привести в движение, то её можно использовать в технических целях. Вопрос только каким образом? Например, из физического вакуума при столкновении протонов, обладающих большой энергией, как черти из табакерки, образуются и вылетают различные элементарные частицы.

Экспериментальные оптико-математические исследования показали, что хотя физическое пространство, глубина которого чувственно воспринимается бинокулярным зрением, на самом деле евклидово, бинокулярное визуальное пространство, вытекающие из психометрической координации, характеризуется гиперболической геометрией Лобачевского [195,196]. Эти исследования подтверждают предложенный механизм мышления человека.

Представляется возможным определить размеры биополя, которое может возникнуть вокруг любого атома водорода.

- 9. Пространство и время // Философский энциклопедический словарь/ Гл. редакция: Л. Ф. Ильичев, П. Н. Федосеев, С. М. Ковалев, В. Г. Панов. М.: Сов. Энциклопедия, 1983. С. 541 542. 195. Luneburg R. K. Metric Methods in Binocular Visual Perception. // Studies and Essays, Courant Anniversary Volume, N. Y.: Inter-science Publishers, 1948. P.215 239.
 - 196. Blank A. A. The non-Euclidem Geometry of Binocular Visual Space. // Bulletin of American Mathematical Society, v. LX (1954), P. 376.

 $(\Box i^2S^{\Box 2i} \times \Box iS^{\Box i\Box 1})$. Нейтрон также находится в двух состояниях: $(+iS^{\Box 2i} \times \Box iS^{\Box i\Box 1})$ и $(\Box iS^{\Box 2i} \times +iS^{\Box i\Box 1})$. Эти два состояния образуют в элементах подрешетки: октаэдрическую и тетраэдрическую. Октаэдрическая подрешетка протона определяет заряд химического элемента, а ее расположение в химическом элементе относительно нейтральной нейтронной части и тетраэдрической составляющей дает то, что в химии и физике называется электронным слоем. Зная структуру протона и нейтрона, составляющие химические элементы, можно сконструировать геометрию каждого элемента и объяснить их свойства. Конструирование каждого химического элемента выходит за рамки данногодоклада, но объяснить периодическое строение таблицы возможно.

находится в двух состояниях —положитсльном ($\pm \iota$ δ \wedge $\pm \iota \delta$) и отрицательном

182. *Карапетьянц М. Х., Дракин С. И.* Строение вещества. М., Высш школа, 1978. 304 с.

Заключение: выводы и перспективы

Возможны следующие, лежащие на поверхности, перспективы использования системы геометризации при развитии науки в целом:

- 1. Основная разработка новой динамической математики (арифметики и геометрии). Известно, что физика изучает движение объектов, а современная математика, особенно геометрия, изучает неподвижные предметы и фигуры. Основы динамической математики были заложены в работе Е.Б.Чижова «Введение в философию математических пространств».
- 2. На основе этой математики необходимо разработать модели элементарных частиц и особенно геометрические модели кванта света, электрона, протона, нейтрона, электронного нейтрино. Такие модели разработаны, но до сих пор не опубликованы.
- 3. Разработать геометрические модели всех химических элементов таблицы Д. И. Менделеева. Так, было найдено, что все места (порядковый номер) нулевого ряда периодической таблицы соответствует числовой зависимости тетраэдрических чисел: n(n+1)(n+2)/6.
- 4. На основании этих моделей синтез химических соединений может быть сведён к геометрическим построениям.
- 5. Необходима разработка механизма мышления человека, т. к. энергия единичного акта мышления лежит ниже энергии вакуумного уровня и основана на его сверхтекучести и проводимости.
- 6. Необходима разработка теории движение вещественных объектов через физический вакуум, модель которого дана в книге «Введение в философию математических пространств» с целью получения энергии из физического вакуума.

Заключение: выводы и перспективы

- Великий Аристотель во «Второй аналитике» (гл. 11) писал: «Все науки имеют между собой нечто общее через общие им начала». Общим началом математики и физики является протяжение, единицей измерения которого является длина. Сведение чисто физических основных и производных единиц к геометрической единице позволило:
- - дать геометрическую интерпретацию основным и производным единицам макромеханики;
- - дать геометрическую интерпретацию основным понятиям микромеханики (электрон, заряд, постоянная Планка, нейтрино, спин, бозоны, фермионы и др.);
- - дать истинные размеры таким понятиям как электрон, заряд и др. и перевести изучение их движения из раздела кинематики в раздел динамики;
- - дать объяснения: соотношению неопределённостей, микроволновому фоновому излучению, тяготению, чёрным и белым дырам; красному смещению галактических объектов и др.
- ■- объяснить, почему существуют четыре взаимодействия;
- - показать, что мега- макро- и микромиры связаны между собой едиными законами и взаимодействиями;
- •- показать, что размерность физической величины есть свойство, связанное с её существом;
- - показать, что масса является движущейся кривизной;
- -показать, что физическое время есть неподвижная кривизна, и понятие «пространство-время» необходимо заменить на понятие «пространство-длительность» или «пространство-движение».
- - показать, что уравнения ОТО являются безразмерными и в дифференциальной форме не пригодны к решению.
- ■-определить энергетику единичного акта мышления равную 1,8 10-26 Дж (1,3 10-3К) и представить его как математико-физико-химический процесс.
- ■1. Основная перспектива это разработка новой динамической математики (арифметики и геометрии). Дело в том, что физика изучает движение объектов, а современная математика, особенно геометрия, изучает неподвижные