Гидроаэродинамические основы безопасности жизнедеятельности

М

Роль гидроаэромеханики в обеспечении безопасности жизнедеятельности

Гидроаэромеханика изучает:

- движения газов и жидкостей в различных условиях;
- тепло- и массообмен внутри жидкостей и газов, а также между средами и объектами, находящимися в них;
- силовое воздействие на объекты (природные объекты, инженерные и технологические сооружения), помещенные в жидкости и газы.

Знание законов гидро- и аэродинамики позволяет понять явления и процессы, протекающие в окружающей нас среде и в технологических процессах, а также рассчитать силовое и тепловое воздействие воздушных и океанических масс на природные объекты, конструкции и сооружения, создаваемые человеком.

Это, в свою очередь, позволяет оценить риски опасности и, в большинстве случаев, обезопасить нашу жизнедеятельность.

Понятие аэрозолей

Строго говоря, реальные природные среды нельзя считать чистыми газами или жидкостями. В атмосфере Земли присутствуют мелкие твердые (песчинки, пыль, снежинки, дымы) или жидкие (капли дождя, туманы) частички. В океанах присутствуют планктон или какие-либо загрязнения. Такие среды называются аэрозолями или газовзвесями и гидровзвесями, соответственно.

Наличие примесей (*включений*) приводит к особенностям в описании движений и процессов в аэрозолях.

Математическое моделирование и описание этих сред, процессов переноса в них и воздействие на объекты – также предмет гидроаэромеханики.

Понятие аэрозолей

К газовзвесям относится не только атмосфера. Течение газовзвесей наблюдается и в некоторых технологических процессах (например, в псевдоожиженных слоях), технических сооружениях (в объектах пневмотранспорта сыпучих материалов и перекачки природных газов по трубопроводам, в реактивных двигателях).

Из сказанного следует важность изучения аэродинамических аспектов с целью обеспечения безопасности жизнедеятельности в условиях неизбежного химического и аэрозольного загрязнения атмосферы, включая ее загрязнение подвижными источниками выбросов (транспортом, например).

Кровеснабжение и ОБЖ.

К гидровзвесям относятся не только течения в океанах, морях, реках и других водоемах. Гидровзвесью является и кровь человека или животных.

Важными особенностями крови являются наличие антисимметричных напряжений в ней, обусловленных завихренностью ее течения, а также ее магнитные свойства при наличии электронейтральности.

Последние два момента особенно важны, поскольку течение магнитной жидкости и ее свойства зависят от электромагнитных полей.

7

Кровеснабжение и ОБЖ.

Поэтому, например, работа мобильных телефонов или ТВканалов на определенной частоте может сказаться на здоровье человека.

Наличие неоднородных магнитных полей может привести к уменьшению или увеличению скорости движения эритроцитов относительно плазмы крови, что приведет к изменению газообмена крови и обеднению газоснабжения тканей и мозга. Изменение газоснабжения мозга может, по-видимому, привести к видению призраков, псевдоинопланетян и даже к более тяжелым последствиям.

ОБЖ, связанное с кровеснабжением организма, направлено, прежде всего, на разработку санитарно-технологических регламентов и соблюдение режима эксплуатации объекта или прибора.

Распространение инфекций и ОБЖ.

Построение математической модели распространения инфекций капельным путем (при кашле или чихании) также требует, вообще говоря, привлечения элементов аэродинамики газовзвесей с гетерогенными процессами, что важно для обеспечения эпидемиологической безопасности жизнедеятельности.

Конечно, такие аспекты важны в условиях бактериологической атаки или случайного выброса болезнетворных организмов.

В обычных условиях описание распространения инфекций осуществляется на уровне простых пространственно однородных моделей с эмпирическими коэффициентами.

٠,

Распространение инфекций и ОБЖ.

Модельная задача 1.

Пусть в момент времени *t* имеется *x* индивидуумов, восприимчивых к инфекции, *y* индивидуумов, являющихся источниками инфекции, и *z* индивидуумов, невосприимчивых к инфекции. Последних называют *удаленными*. К удаленным индивидуумам, очевидно, относятся те индивидуумы, которые не могут заболеть: изолированные, переболевшие, в результате чего получившие иммунитет, и, наконец, умершие. Умершие ведь тоже не могут заболеть.

Заражение восприимчивых от инфицированных описывается коэффициентом (частотой) а, а попадание в разряд удаленных – коэффициентом (частотой) µ.

М

Можно составить систему уравнений, описывающих распространение инфекций:

Первое уравнение описывает убыль восприимчивых из-за их заражения, второе уравнение описывает прибыль инфицированных за счет восприимчивых к инфекции и убыль инфицированных за счет удаленных, а третье уравнение — прибыль удаленных за счет тех, кто не может попасть в разряд инфицированных. При этом общее число индивидуумов x+y+z=n=const.

$$\frac{dx}{dt} = -\alpha xy,$$

$$\frac{dy}{dt} = \alpha xy - \mu y,$$

$$\frac{dz}{dt} = \mu y$$

М

Модельная задача 2.

Предыдущая задача не описывала появление в регионе, в котором наблюдается распространение инфекции, лиц извне, но таких, которые могут заразиться. С точки зрения борьбы с инфекцией такая возможность должна учитываться. В этом случае в дополнение к условиям задачи 1 необходимо добавить возможность появления извне новых лиц, восприимчивых к инфекции, которая описывается коэффициентом *q*. Тогда система уравнений, описывающая распространение инфекций, модифицируется к виду:

$$\frac{dx}{dt} = -\alpha xy + q,$$

$$\frac{dy}{dt} = \alpha xy - \mu y,$$

$$\frac{dz}{dt} = \mu y$$

ОБЖ при распространении инфекций, передающихся воздушно-капельным путем

фактически основано на создании преград на пути тока воздуха, препятствующих попаданию инфекции в организм (изоляция, респераторы, марлевые повязки), или на проведении профилактических прививок.

Понятие и классификация опасностей

Под опасностью подразумевается возможность элементов системы «человек-среда обитания» причинять ущерб людям, природной среде и материальным ресурсам.

Все опасности по источникам возникновения можно разделить на естественные и антропогенные.

Естественные опасности возникают при стихийных явлениях в биосфере (землетрясения, наводнения, ураганы, циклоны и т.п.).

Их характерными особенностями являются неожиданность, хотя некоторые из таких опасностей удается предсказывать, и независимость от человека.

Понятие и классификация опасностей

Антропогенные опасности возникают, как это следует из названия, в результате техногенной деятельности человека.

Их источником являются люди.

Величина ущерба от них зависит от плотности и энергетического уровня используемых технических средств.

Рост негативных явлений в сильной степени связан с незнанием причин возникновения опасностей и их последствий, а также с нарушением трудовой дисциплины и технологических рекомендаций.

M

Понятие и классификация опасностей

Существует более детальная классификация опасностей по их происхождению.

Все опасности можно условно разделить на 6 категорий:

- природные;
- техногенные;
- антропогенные;
- экологические;
- социальные;
- биологические.

М

Природные опасности

К природным опасностям относятся стихийные явления, которые представляют непосредственную угрозу для жизни и здоровья людей — землетрясения, извержения вулканов, снежные лавины, сели, оползни, камнепады, наводнения, штормы, цунами, тропические циклоны, смерчи, молнии, космические излучения и тела и др.

Их характерные особенности: неожиданность и независимость от человека.

Некоторые природные опасности нарушают или затрудняют нормальное функционирование систем и органов человека, например, туман, гололед, жара, холод и т.п.

В безопасности жизнедеятельности рассматриваются не все природные катастрофы и стихийные явления, а лишь те из них, которые могут принести ущерб здоровью или привести к гибели людей.

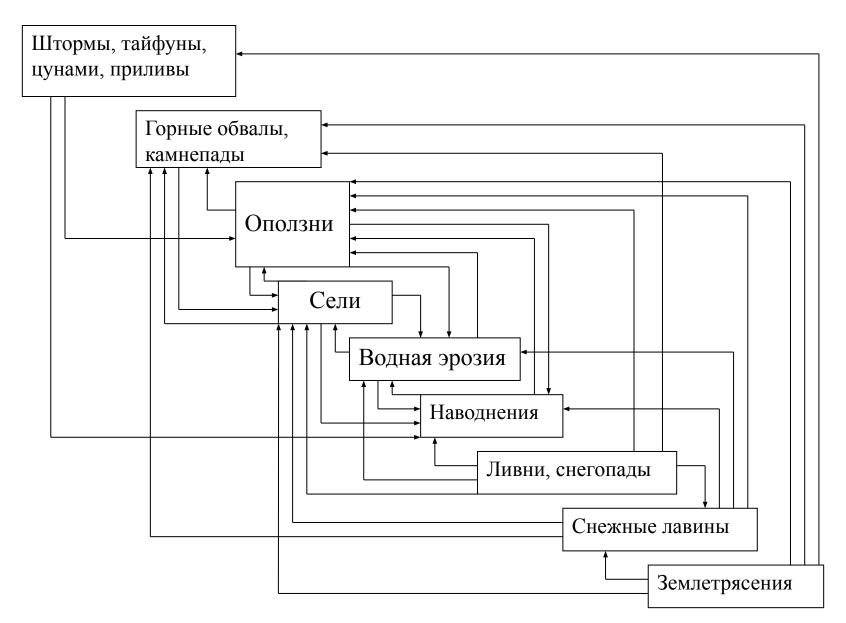
Общие закономерности природных опасностей:

- Для каждого вида опасностей характерна определенная пространственная приуроченность
- Чем больше интенсивность (мощность) опасного явления, тем реже оно случается
- Каждому виду опасностей предшествуют некоторые специфические признаки (предвестники)
- При всей неожиданности той или иной природной опасности ее появление может быть предсказано
- Во многих случаях могут быть предусмотрены пассивные и активные защитные мероприятия от природных опасностей

w

Природные опасности

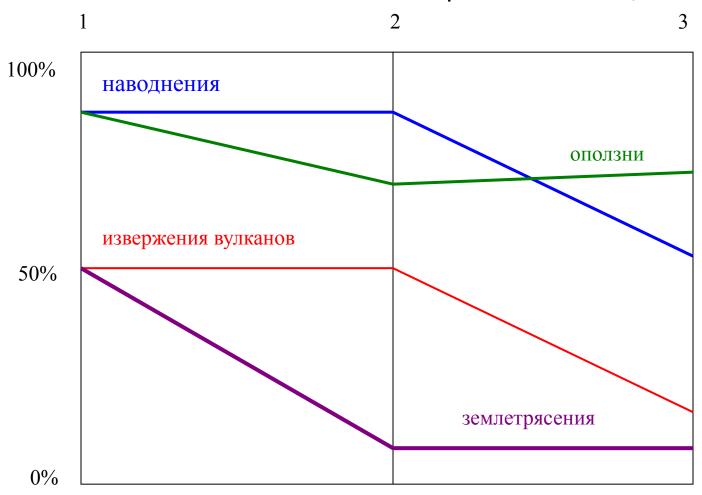
- Говоря о природных опасностях, следует подчеркнуть роль антропогенного влияния на их проявление.
- Известны многочисленные факты нарушения равновесия в природной среде в результате деятельности человека, приводящие к усилению опасных воздействий.
- В настоящее время масштабы использования природных ресурсов существенно возросли. Это привело к тому, что стали ощутимо проявляться черты глобального экологического кризиса. Природа как бы мстит человеку за грубое вторжение в ее владения.
- Соблюдение природного равновесия является важнейшим профилактическим фактором, учет которого позволит сократить число опасных явлений.


Природные опасности

Между природными опасностями существует взаимная связь.

Одно явление может послужить причиной, спусковым механизмом последующих.

Схема «цепного» взаимодействия стихийных явлений.


Необходимость изучения причин и механизмов

По имеющимся оценкам, число опасных природных событий на Земле с течением времени не растет или почти не растет. Но человеческие жертвы и материальный ущерб увеличивается. Ежегодная вероятность гибели жителя планеты Земля от природных опасностей ориентировочно равна 10⁻⁵, т. е. на каждые 100 тыс. жителей погибает один человек.

Предпосылкой успешной защиты от природных опасностей является изучение их причин и механизмов. Зная сущность процессов, можно их предсказывать, а своевременный и точный прогноз опасных явлений является наиважнейшей предпосылкой эффективной защиты.

Примерная зависимость между изученностью опасностей, их прогнозом и защитой от них:

1 – возникновение и механизм; 2 – прогноз; 3 – защита.

7

Защита от природных опасностей:

- Активная строительство инженернотехнических сооружений, интервенция в механизм явления, мобилизация естественных ресурсов, реконструкция природных объектов и др.
- Пассивная использование укрытий.
- В большинстве случаев активные и пассивные методы сочетаются.

Классификация природных опасностей по локализации:

- Литосферные землетрясения, вулканы, оползни и др.
- Гидросферные наводнения, цунами, штормы и др.
- Атмосферные ураганы, бури, смерчи, град, ливень и др.
- Космические астероиды, планеты, излучения и др.

Литосферные опасности

Как известно, литосферу образуют верхняя мантия Земли и земная кора.

Температура в мантии считается равной 2000...2500°C, а давление находится в пределах 1...130ГН/м².

Именно в мантии происходят тектонические процессы, вызывающие <u>землетрясения</u>.

К литосферным опасностям относятся также извержения вулканов, оползни, сели, снежные лавины.

Гидросферные опасности. Цунами.

Цунами – это пример естественных (природных) опасностей, создаваемых волновыми движениями океана. В переводе с японского *цунами* означает «волна в порту» или «волна в заливе».

Цунами относится к классу волновых движений жидкости. Это длинные гравитационные волны.

Длинные волны — это волны, для которых отношение высоты волны к ее длине значительно меньше единицы. Гравитационные волны — это волны, механизм образования которых гравитационный, т.е. связан с силами тяжести: подводные землетрясения (около 85% всех цунами), оползни (около 7% всех цунами), вулканическая деятельность (около 5% всех цунами), падение метеоритов, очень сильные, например атомные, подводные взрывы.

Главная особенность цунами — вовлечение в движение всей толщи воды, а не только приповерхностного слоя, что несет огромную разрушительную энергию.

При этом цунами появляются как серия очень длинных волн.

Распространение цунами

В силу малой сжимаемости воды и быстроты процесса деформации участков дна опирающийся на них столб воды также смещается, не успевая растечься, в результате чего на поверхности воды образуется некоторое возвышение или понижение. Образовавшееся возмущение переходит в колебательное движение толщи воды, распространяющееся со скоростью, пропорциональной квадратному корню из глубины моря (50...1000 км/ч).

Расстояние между соседними гребнями волн L=5...1500 км.

Хотя скорость волны огромна, в открытом океане она не опасна из-за ее пологости и очень большой длины. Высота волн в области их возникновения *h*=0,1...5 м.

При подходе к берегу глубина бассейна уменьшается, и на мелководье происходит деформация волн, которая сопровождается концентрацией энергии. Высота волн сильно увеличивается, достигая у берегов *h*=30...40 м.

v

Распространение цунами

Исходя из законов гидродинамики, можно получить систему уравнений, описывающих распространение цунами в виде:

$$\frac{p - p_a}{\rho} = -\frac{\partial}{\partial t} \Phi + gz, \quad \Delta \Phi = 0, \quad \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Здесь p — давление, p_a — атмосферное давление, Φ — потенциал скорости, g — ускорение свободного падения

Цунами набегает на берег

Опрокидывание гребня цунами

Опасность цунами

Цунами, проникая на берег, обладает громадной разрушительной силой. Она может привести к большим человеческим жертвам и огромным разрушениям. Известно более 1000 случаев цунами, из них около 100 с катастрофическими последствиями. Так, например, в ночь с 4-го на 5-е ноября 1952 г. волной, возникшей в результате землетрясения вблизи берегов Камчатки был полностью смыт город Северо-Курильск, погибли 14 тыс. человек.

К счастью, столь разрушительные цунами – явление очень редкое, происходящее один-два раза в столетие. Поэтому экономически выгоднее отстраивать города заново, нежели переносить их вглубь материка, удаляя от транспортных линий.

Разрушительная сила цунами

7

Прогноз цунами

Надежной защиты от цунами нет.

Мероприятия по частичной защите — сооружения волнорезов, молов, насыпей, устройство гаваней, т. к. закрытые бухты безопаснее открытых.

Для спасения людей и части материальных ценностей важно решить проблему прогноза цунами.

Прогноз цунами

Важное значение для защиты населения от цунами имеют службы предупреждения о приближении волн.

В открытом океане или море длина волны цунами порядка 100 км, а высота – порядка 1 м. Поскольку отношение высоты волны к ее длине порядка 10⁻⁵, то цунами невозможно зарегистрировать с судов, но можно зафиксировать из космоса.

Прогноз цунами

Система предупреждения цунами основана, главным образом, на обработке сейсмической информации, т.е. на опережающей регистрации землетрясений береговыми сейсмографами.

Время между землетрясениям и порожденным им цунами колеблется от нескольких минут до суток. Этого запаса времени достаточно, чтобы спрогнозировать возникновение и момент прихода цунами и оповестить о его опасности жителей прибрежных районов.

При извещении о цунами необходимо срочно покинуть зону возможного удара волны и территорию затопления на расстояние 2...3 км.

Прогноз цунами

Для практических целей важно обнаружение разрушительных цунамиопасных землетрясений большой силы, угрожающих сооружениям и населенным пунктам, поскольку превентивные меры очень дорогостоящие.

Однако, эффективность предсказания опасных цунами на современном этапе развития науки мала: всего около 20-30%.

Разрушительная сила цунами при выходе на берег. Выполнение рекомендации «лучше срочно покинуть берег»

Атмосферные опасности

Как известно, <u>атмосфера</u> – это газовая среда вокруг Земли, вращающаяся вместе с нею.

В результате естественных процессов, протекающих в атмосфере, на Земле наблюдаются явления, которые представляют непосредственную опасность или затрудняют функционирование систем человека. К таким атмосферным опасностям относятся туманы, гололед, молнии, ураганы, бури, смерчи, метели, торнадо, ливни.

В атмосфере можно рассмотреть два типа гидроаэромеханических движений — течения и волны. Наиболее важное отличие волн от течений заключается в том, что волны не переносят собой массу, а течения - переносят.

Атмосферные опасности

Волновые движения атмосферы – это привычные нам внутренние волны, описывающие распространение звука.

С точки зрения безопасности жизнедеятельности можно лишь напомнить, что очень громкий звук и длительное применение слуховых наушников опасны для здоровья: могут привести к тугоухости и даже глухоте.

Торнадо

Типичный пример естественных (природных) опасностей, создаваемых течениями атмосферы — это торнадо.

Торнадо – природное атмосферное явление огромной разрушительной силы, приводящее к большим материальным потерям и, нередко, к человеческим жертвам.

Проблема описания поведения торнадо и процессов, протекающих в них, несмотря на большое число попыток, далека от завершения, что связано с невозможностью организации наблюдений внутри смерча из-за неизбежных поломок аппаратуры.

Торнадо

Торнадо представляет собой циркуляционные (закрученные) течения аэрозолей (газовзвесей).

Причиной закручивания газовзвесей является столкновение встречных потоков.

В Северном полушарии вращение происходит, как правило против часовой стрелки, но известны случаи и обратного вращения.

Если бы смерчи не содержали взвешенных частиц или капель, то они не были бы видны.

Образование торнадо

Механизм образования торнадо изучен недостаточно. Можно лишь указать самые общие сведения о смерчах.

Отличительной чертой всех торнадо является материнское облако, из которого смерч зарождается.

Энергия обычного смерча сравнима с энергией атомной бомбы, взорванной США в 1945 г. во время испытаний.

Образование торнадо

Размеры торнадо велики: диаметр его нижнего поперечного сечения составляет 300...400 м. (при касании воды — 20...30 м.), а высота — от нескольких сотен метров до 1,5 км.

Большие размеры смерчей позволяют использовать для их описания модель динамики идеальной жидкости, но с замыкающими соотношениями, полученными методами кинетической теории газовзвесей.

Типичный вид торнадо

Наверху - материнское облако, внизу за пределами основного «столба смерча» - явление, называемое каскадом

Более редкий «бичеподобный» торнадо

Скорости движения торнадо

Средняя скорость перемещения смерча составляет 11...17 м/с. Косвенные оценки тангенциальной скорости торнадо дают значения от 20 м/с до 200...360 м/с.

Столь огромные тангенциальные скорости приводят к очень серьезным повреждениям окружающих объектов: стены деревянных домов насквозь протыкаются летящей доской; щепки протыкают деревья.

Торнадо обладает внутренней воронкообразной полостью с резко пониженным давлением.

Давление настолько низкое, что приводит к *взрыву изнутри* замкнутых наполненных газом предметов. Внешняя граница смерча резко очерчена (ее можно считать поверхностью раздела сред).

Время существования торнадо:

от нескольких минут до более 7-ми часов, что позволяет применить для их описания теорию квазистационарных течений аэрозолей

Меры защиты от торнадо обусловлены невозможностью влияния на столь мощное явление как торнадо.

Опознаются смерчи, как правило, с метеоспутников.

Система мер безопасности заключается в следующем:

- 1. Прежде всего должно последовать предупреждающее сообщение.
- 2. Самые безопасные места защитные сооружения гражданской обороны, подвалы и внутренние помещения первых этажей кирпичных зданий.
- 3. Если приближение торнадо застало на улице, нужно быстро укрыться в ближайшем углубленном помещении.
- 4. При нахождении на открытой местности нужно использовать любые углубления, прижимаясь в них к земле.

м

Кинетико-гидроаэродинамический подход к описанию газовзвесей позволяет продвинуться в изучении течений и процессов внутри торнадо.

В частности, он дает:

- увеличение радиуса торнадо с высотой, которое типично для него.
- уменьшение с высотой продольной скорости смерча обратно пропорционально квадрату его радиуса
- обратно пропорциональную зависимость тангенциальной скорости от первой степени этого радиуса, но дробно-степенную зависимость от безразмерной радиальной координаты
- зависимость радиальной составляющей скорости от градиента продольной скорости
- падение давления внутри смерча к его оси и по высоте
- практически расширяющееся винтовое движение элементарного объема смерча

Лекция окончена.

Спасибо за внимание!

- 1. Русак О.Н., Малаян К.Р. Занько Н.Г. Безопасность жизнедеятельности: Учебное пособие. СПб.: Лань, 2004, 448 с.
- 2. Цибаров В.А. Кинетический метод в теории газовзвесей. СПб.: Изд-во СПбГУ, 1997. 192 с.
- 3. Бейли Н. Математика в биологии и медицине. М.: Мир, 1970. 328 с.

7

Типовой вариант контрольной работы:

- Ответы оформляются на данном листе с двух сторон, ответы рецензируются по 8-ми бальной шкале, задание считается выполненным при общей сумме не менее 12 баллов
- 1. Дать определение безопасности жизнедеятельности
- 2. Решить задачу
- Сравнить уровень интенсивности шума L от автомобиля и трамвая в процентах, если известно, что первый в полтора раза тише по силе звука I, чем второй.
- Примечание: использовать формулу связи уровня интенсивности шума и силы звука в виде L=10 lg(I/I0), где I0 порог слышимости, равный 10-12Вт/м2.
- 3. Построить дерево причин и последствий в ситуации «Ребенок заблудился в лесу»