

Стебаков Е.И. ООО ЦРСАП «САПРОТОН» (г. Реутов)

О некоторых особенностях расчета железобетонных конструкций методом конечных элементов с учетом образования трещин

(на примере расчета в NormCAD/NormFEM)

Нелинейный расчет по СП 52-103-2007 "Железобетонные монолитные конструкции зданий"

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Из СП 52-103-2007 "Железобетонные монолитные конструкции зданий":

1. На первой стадии расчета ... нелинейную работу элементов рекомендуется учитывать путем понижения их жесткостей с помощью условных обобщенных коэффициентов (п. 6.2.5 - 6.2.6):

- 0,6 - для вертикальных сжатых элементов;

- 0,3 - для плит перекрытий (покрытий)

2. На последующих стадиях расчета ... следует вводить уточненные значения жесткостей элементов ... с учетом армирования, образования трещин и развития неупругих деформаций в бетоне и арматуре согласно указаниям действующих нормативных документов по проектированию железобетонных конструкций (п. 6.2.5)

Нелинейный расчет по СП 52-103-2007

Ограничения/недостатки метода СП 52-103-2007:

 не учитывается скачок угла поворота в сечениях с максимальными пластическим деформациями (в пластических шарнирах)

• не предусмотрено монотонное увеличение интенсивности воздействий

 не учитываются деформации сдвига (наклонные трещины; сдвиг в зоне сцепления арматуры с бетоном) Методы расчета железобетонных конструкций Eurocode (EN 1992-1-1):

- линейно-упругий расчет (п. 5.4):

с учетом уменьшения жесткости сечений с трещинами

- линейно-упругий расчет с ограниченным перераспределением моментов (п. 5.5):

моменты могут быть перераспределены с сохранением равновесия с приложенными нагрузками

- пластический расчет (п. 5.6), включая модели стержневые - «распорки и тяжи» (п. 5.6.4):

исключительно для проверки предельного состояния по несущей способности

влияние предыдущих приложений нагрузки может не учитываться, и принимается монотонное увеличение интенсивности воздействий

ограничивается угол поворота в пластическом шарнире (проверка способности к повороту участков длиной, примерно составляющей 1,2-кратную высоту поперечного сечения; предполагается, что данные участки первыми испытывают пластическую деформацию)

- нелинейный расчет (п. 5.7):

нелинейные методы расчета используются для проверки предельных состояний по несущей способности и эксплуатационной пригодности

влияние предыдущих приложений нагрузки может не учитываться, и принимается монотонное увеличение интенсивности воздействий

должны применяться такие характеристики материалов, которые отражают реальную жесткость и учитывают погрешности разрушения

Диаграммы состояния бетона (по СП 52-101)

Предпочтительно использование *трехлинейной* диаграммы.

Как наиболее простая в ряде случаев может быть использована *двухлинейная* диаграмма:

- при расчете прочности;
- при расчете образования трещин для оценки напряженно-деформированного состояния растянутого бетона при упругой работе сжатого бетона;
- при расчете деформаций при наличии трещин.

Деформационная модель СП 52-101

Основная система уравнений:

$$M_{x} = D_{11} \cdot \frac{1}{r_{x}} + D_{12} \cdot \frac{1}{r_{y}} + D_{13} \cdot \varepsilon_{o}$$

$$M_{y} = D_{12} \cdot \frac{1}{r_{x}} + D_{22} \cdot \frac{1}{r_{y}} + D_{23} \cdot \varepsilon_{o}$$

$$N = D_{13} \cdot \frac{1}{r_{x}} + D_{23} \cdot \frac{1}{r_{y}} + D_{33} \cdot \varepsilon_{o}$$

Полученные из решения этой системы уравнений деформации не должны превышать предельных значений: $|\varepsilon_{b,max}| \le \varepsilon_{b,ult}$ $\varepsilon_{s,max} \le \varepsilon_{s,ult}$

Жесткостные характеристики D₁₁ – D₃₃ определяются с помощью процедуры численного интегрирования по участкам сечения с использованием диаграмм состояния бетона и арматуры.

Жесткостные характеристики D_{ij} определяются по формулам: $D_{11} = \sum_{i} A_{bi} \cdot Z_{bxi}^{2} \cdot E_{b} \cdot v_{bi} + \sum_{j} A_{sj} \cdot Z_{sxj}^{2} \cdot E_{sj} \cdot v_{sj}$ $D_{22} = \sum_{i} A_{bi} \cdot Z_{byi}^2 \cdot E_b \cdot v_{bi} + \sum_{i} A_{si} \cdot Z_{syj}^2 \cdot E_{si} \cdot v_{sj}$ $D_{12} = \sum_{i} A_{bi} \cdot Z_{bxi} \cdot Z_{byi} \cdot E_{b} \cdot v_{bi} + \sum_{i} A_{si} \cdot Z_{sxj} \cdot Z_{syj} \cdot E_{sj} \cdot v_{sj}$ $D_{13} = \sum_{i} A_{bi} \cdot Z_{bxi} \cdot E_{b} \cdot v_{bi} + \sum_{i} A_{si} \cdot Z_{sxj} \cdot E_{si} \cdot v_{sj}$ $D_{23} = \sum_{i} A_{bi} \cdot Z_{byi} \cdot E_{b} \cdot v_{bi} + \sum_{i} A_{sj} \cdot Z_{sy} \cdot E_{sj} \cdot v_{sj}$ $D_{33} = \sum_{i} A_{bi} \cdot E_{b} \cdot v_{bi} + \sum_{j} A_{sj} \cdot E_{sj} \cdot v_{sj}$

Значения коэффициентов v_{bi} и v_{si} определяются по формулам:

$$v_{bi} = \frac{\sigma_{bi}}{E_b \cdot \varepsilon_{bi}} \qquad \qquad v_{sj} = \frac{\sigma_{sj}}{E_{sj} \cdot \varepsilon_{sj}}$$

с учетом диаграмм состояния бетона и арматуры.

Расчет ведется итерационно, принимая на первом этапе упругую работу материала.

EI _{red} – жесткость для расчета прогиба (при длительных нормативных нагрузках)

где *I* _{*red*} – привиденный момент инерции с учетом площади сечения арматуры и только сжатой зоны бетона

при $E_b = E_{b,red}$ - приведенный модуль деформации сжатого бетона

Из СП 52-101-2003: Определение кривизны железобетонных элементов на основе нелинейной деформационной модели

7.3.16 Значения кривизны, входящие в формулы (7.28) и (7.29), определяют из решения системы уравнений (6.36)-(6.40). При этом для элементов с нормальными трещинами в растянутой зоне напряжение в арматуре, пересекающей трещины, определяют по формуле

$$\boldsymbol{\sigma}_{sj} = \frac{E_{sj} \boldsymbol{v}_{sj} \boldsymbol{\varepsilon}_{sj}}{\boldsymbol{\psi}_{sj}}$$
(7.51)

где

(7.52) $\psi_{sj} = \frac{1}{1+0.8} \frac{\varepsilon_{sj,crc}}{c}$ \mathcal{E}_{sj}

Распределение напряжений в арматуре

Определение момента образования трещин на основе нелинейной деформационной модели:

Из п. 7.2.11 СП 52-101-2003:

Значение М_{сгс} определяют из решения системы уравнений, представленных в 6.2.2 - 6.2.31, принимая относительную деформацию бетона є_{bt,max} у растянутой грани элемента от действия внешней нагрузки равной предельному значению относительной деформации бетона при растяжении є_{bt,ult}

$$\boxed{ \epsilon_{bt,max} = \epsilon_{bt,ult} } \longrightarrow \boxed{M_{crc}}$$

Определение коэффициента У_S

$$\Psi_{sj} = 1/(1+0.8 \mathcal{E}_{sj,crc} / \mathcal{E}_{sj})$$

где $\mathcal{E}_{sj,crc} = Z_{sxj} \frac{1}{r_{x,crc}} + Z_{syj} \cdot \frac{1}{r_{y,crc}} + \mathcal{E}_{o,crc}$ - деформации в арматуре

в момент образования трещин

Определяем
$$\frac{1}{r_{x,crc}}, \frac{1}{r_{y,crc}}, \varepsilon_{o,crc}$$
 из решения системы уравнений,

принимая максимальную относительную деформацию растяжения бетона равной $\mathcal{E}_{bt,ult}$:

$$\begin{split} \varepsilon_{bt,ult} &= Z_{bx} \cdot \frac{1}{r_{x,crc}} + Z_{by} \cdot \frac{1}{r_{y,crc}} + \varepsilon_{o,crc} \\ 0 &= D_{11} \cdot \frac{1}{r_{x,crc}} + D_{12} \cdot \frac{1}{r_{y,crc}} + D_{13} \cdot \varepsilon_{o,crc} - M_x k_{crc} \\ 0 &= D_{12} \cdot \frac{1}{r_{x,crc}} + D_{22} \cdot \frac{1}{r_{y,crc}} + D_{23} \cdot \varepsilon_{o,crc} - M_y k_{crc} \\ N &= D_{13} \cdot \frac{1}{r_{x,crc}} + D_{23} \cdot \frac{1}{r_{y,crc}} + D_{33} \cdot \varepsilon_{o,crc} \end{split}$$

где
$$k_{crc} = M_{crc} / M =$$

= $M_{crc} / \sqrt{M_x^2 + M_y^2}$

Приведенные жесткости конечных элементов: $EI_X = D_{11} - (D_{12}^2 D_{33} + D_{13}^2 D_{22} - 2D_{12} D_{13} D_{23}) / (D_{22} D_{33} - D_{23}^2)$ $EI_Y = D_{22} - (D_{12}^2 D_{33} + D_{23}^2 D_{11} - 2D_{12} D_{13} D_{23}) / (D_{11} D_{33} - D_{13}^2)$ $EA = D_{33} - (D_{23}^2 D_{11} + D_{13}^2 D_{22} - 2D_{12} D_{13} D_{23}) / (D_{11} D_{22} - D_{12}^2)$

Вывод уравнений для приведенных жесткостей

Elx определяем из решения системы уравнений:

Пример расчета в программе Деформационная модель (с данными из примера 40 Пособия к СНиП 2.03.01-84).

Последовательность действий в программе «Деформационная модель»:

- В программе AutoCAD создается чертеж контуров сечения бетона и арматуры. (Все размеры задаются в мм.)
- 2. Запускаем программу «Деформационная модель».
- Преобразуем замкнутые контуры в регионы, с помощью кнопки , указывая их на чертеже.

4. Задаем свойства арматуры и кнопкой **Выбор регионов** указываем регионы арматуры на чертеже (они отмечаются синим цветом).

5. Аналогично задаем свойства бетона и указываем соответствующий регион на чертеже (выбранный регион отмечается красным цветом).

Последовательность действий в программе «Деформационная модель».

6. Производим разбиение сечения на участки:

7. Вводим значения усилий

Последовательность действий в программе «Деформационная модель».

- 8. Нажмем кнопку Вычислить.
- 9. Установим просмотр значений напряжений в основных точках и в центре каждого участка:

-10,982	-10,318 -168.7N	-9,255	-5,968	0,614	ů	ů	ů	enarge	13,13
-11.714	-10.85	-9,987	-9.488	-4,305	1.02	0	0	0	0
-12,446	-11,582	-10,719	-9,855	-8,998	-3,648	1,05	ů	ů	ů
-13.178	-12.314	-11.451	-10,587	-9.724	-8,86	-2.478	0	0	0
-13,919	-19,046	-12,182	-11'318	-10,455	-9,598	-8,728	-1,914	•	û
-14.5	-13.778	-12.914	-12.031	-11.187	-10.824	-9.46	-7.788	-01202	0
-14,5	-14,5	-13,646	-12,783	-11,919	-11,056	-10,192	-9,329	-6,524	0,8979
-14.3	-14.3	-14.378	-13.515	-12.651	-11.788	-10.984	-10.061	-9497	-5.461
-14,5	-14,5	-14,5	-14,847	-19,983	-12,52	-11,658	-10,793	-9,988	-9,066
-14.5 -14,5	- 355.0 14.3	-5,0 -14.3	-14.3	-14.115	-13.252	-12.368	-11.525	-146, -10,66L	} -9.798

Расчетная схема:

10. Перейдем на вкладку Отчет и ознакомимся с результатами выполнения проверок.

Текст отчета с помощью кнопки Скопировать отчет можно скопировать в буфер обмена для последующего использования.

Приведем окончание отчета с результатами выполнения проверок:

Предельные значения относительной деформации арматуры и бетона:

$$e_{s,ult} = 0,025; e_{b,ult} = 0,0035.$$

Максимальные значения относительной деформации арматуры и бетона:

$$e_{s,max} = 0,002642; |e_{b,max}| = 0,00314$$

Следовательно, условия прочности выполняются. Запас 10,28%.

Напомним, что в примере 40 Пособия к СНиП 2.03.01-84 запас прочности составил 9,7%.

NormFEM — МКЭ - модуль в составе пакета NormCAD

Программа NormFEM

для расчета усилий в элементах конструкций методом конечных элементов и передачи в NormCAD таблиц усилий

Основные возможности NormFEM:

- статический расчет плоских и пространственных конструкций
- подбор сочетаний нагрузок и воздействий с учетом требований СНиП "Нагрузки и воздействия«, СНиП "Строительство в сейсмических районах" и др.
- передача сочетаний усилий и соответствующих коэффициентов условий работы в программу NormCAD для проверок в соответствии с нормативными документами
- учет физической нелинейности (по деформационной модели СП 52-101-2003)
- учет геометрической нелинейности (при предположении малых деформаций)
- расчет пластин ведется на основе использования модели перекрестной сети из стержневых элементов (что упрощает учет физической нелинейности по СП 52-101-2003)
- расчетная схема элементов задается во внешнем графическом редакторе (AutoCAD или ZwCAD)

NormFEM

Основные преимущества NormFEM:

Основное окно программы NormFEM

№ NormFEM - [Материалы]								_ 🗆 ×	
💾 🗅 🖨 🖬 📲 📥	_3 ≵↓ 1	1 10, 1 🖻	a 🔏 🛍		-	P	ŧ		- панели
🛱 🔡 Материалы 🕜	• A	m ₩		t 🛲	t°	4	•	1:5	с кнопками
Материал К	ласс(порода)	KTP, 1/C*	Е, МПа	EL, M∏a	G, МПа	v	Плотн	юсть, кг	
									верняя
									с вкладками
									l.
🏅 🤗 Справка 💷 Ошиб	ки 🖹 Прот	гокол							
🛔 🔢 Таблица "Матер	иалы"							-	100000000
Для ввода данных мат	ериала из Би	блиотеки	матери	алов наж	мите кно	пку 🕻	3 .		нижняя панель
Для добавления матер	иала можно в иала нажмит	е кнопку 📕	ле в ячен . Для уд	аления ма	њ. атериала	нажм	ите	-	с вкладками
	1		61	CT	nell				KHORKA STOP

Режим показа:

- исходных данных
 информации об узлах и элементах
 результатов расчета

- запуск на расчет 1

Учет физической нелинейности в NormFEM

- За основу взяты положения СП 52-101-2003 и СП 52-103-2007.
- Реализован учет коэффициента неравномерности деформаций по длине элемента У по формуле 7.52 СП 52-101-2003.
- Возможно задать монотонное увеличение интенсивности воздействий количество этапов нагружения.

• Введены диаграммы материалов по СП 52-101-2003. Возможно подключение других диаграмм.

Учет физической нелинейности в NormFEM

Таблицы для учета Диаграммы работы материала физической нелинейности Участки сечения Участки сечения арматуры Библиотека диаграмм 🚹 NormFEM - [40] - [Диаграммы работы материала] - 0 × 🗅 🚅 🔲 🔹 * 严 - - - 2 Ba X 🖻 Q 悝 m 🛵 Диаграммы работы материала 📑 :14 æ mh î. L.,,,,, <u>NM Класс</u> Деформации Напряжения, МПа Деформации длит. Напряжения длит., МПа \$20 EboL. S: Si B25 -0,0035; -0,002 -14,5; -14,5; -8,7; 0; C 0,002 -0,0048; -0,0034; -0,0(-13,05; -13,05; -7,83; 0; 0,5€ 0,0034 A-III -0,025; -0,0017 -355; -355; 0; 355; 35 -0,025; -0,001775; 0; (-355; -355; 0; 355; 355

		8	•	<u>A</u>		X H	#	+	m	t t	1	🕒 Уча	стки сечения	94	
Γ	N	<u>E</u>	Гр. эл	ементо	<u>)</u> B		t), CM	ł	п, СМ	1	Хо, см	Үо, см	Сетка	
1	1						4	10	6	60		0	0	10x10	

	<u>NE</u> <u>Гр. элементов</u>		<u>NM</u>	Марка материала	А, см^2	Хо, см	Үо, см	
1	1		2	A-III	8,04	-15	25	
2	1		2	A-III	8,04	-15	-25	
3	1		2	A-III	8,04	15	-25	
4	1		2	A-III	8,04	15	25	
5	1		2	A-III	3,14	-15	0	
6	1		2	A-III	3,14	15	0	

Учет физической нелинейности в NormFEM

Библиотека диаграмм

0	P10	При кратковременном	1 загружении:
диаграммы работы материалов	B15	Деформации Напря	жения(МПа)
	B20	-0,0035	-14,5
В дажность выше 75 процентов	B25	-0,002	-14,5
	B30 B35	-0,00029	-8,7
Влажность от 40 до 75 процентов	B40	0	0
П С бетонированием в горизонтальном г	B45	0,000021	0,63
Влажность выше 75 процентов	850	0,0001	1,05
— 🛅 Влажность ниже 40 процентов	B60	— При длительном загру	,жении:
🖂 Влажность от 40 до 75 процентов		Деформации Напря	жения(МПа)
		-0,0048	-13,05
		-0,0034	-13,05
		-0,0009135	-7,83
		0	0
		0,00006615	0,567
		0.00024	0.945

Результаты расчета в NormFEM

Диаграмма Момент - Жесткость не работает в зоне пластических шарниров

М. Тихий, И. Ракосник

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ РАМНЫХ КОНСТРУКЦИЙ В ПЛАСТИЧЕСКОЙ СТАДИИ. ПЕРЕРАСПРЕДЕЛЕНИЕ УСИЛИЙ

Допустим, что поворот θ сосредоточен в критическом сечении; тогда получим здесь *пластический шарнир*.

... шарнир воспринимает приращение изгибающего момента вплоть до разрушения. Такой шарнир назовем несовершенным в отличие от пластического шарнира совершенного, в котором предполагается, что он, начиная с определенного изгибающего момента, будет еще в состоянии нести приращения деформаций, но ни в коей степени не приращение моментов.

Результаты эксперимента

Модель с ограниченной зоной пластических деформаций

Модель с ограниченной зоной пластических деформаций в NormFEM

		🖍 Группы з	элеме	ентов 🔹 🕰	<u> </u>	m	X . #	# ₺		t°] =	k ₫	· :5	• ≣	1	西	
Γ	NN	Группа эл.	<u>NM</u>	Класс(порода)	Профиль	Вх, см	Ву, см	А, см2	Јх, см4	Ју, см4	Jt, см4	Угол	Плита	X	Y	физ.нелин.
1	1		1	B20		17	22	374	15084,6	9007,16	36028,6			0	C	1-без учета
2	2		1	B20		17	22	374	15084,6	9007,16	36028,6			0	C	0-с учетом

