Национальная академия наук Украины Институт электрофизики и радиационных технологий

Модификация структурных, электрофизических и механических свойств металлических материалов, облученных трубчатым сильноточным релятивистским электронным пучком

Донец Станислав Евгеньевич

Особенности процессов модификации металлов и сплавов пучками электронов

В настоящее время предметом интенсивных исследований являются процессы изменения свойств материалов под воздействием концентрированных потоков энергии: лазерное излучение, плазменные потоки, пучки заряженных частиц. Повышенный интерес к прикладному использованию сильноточных

релятивистских

- трубчатых пучков электронов активизировался в связи с развитием сильноточных твердотельных коммутаторов, позволяющих реализовывать частотные режимы обработки.
- В радиационных технологиях на базе пучков электронов в качестве инструмента управления используются, как правило, внешние магнитные поля. Поскольку сильноточные импульсные пучки требуют использования магнитных полей с более высокими значениями напряженности, а также согласованности во времени воздействия этих полей, представляется целесообразным учет механизмов фокусировки пучка в результате взаимодействия с полями наводимыми в примишенной оснастке. Также важно изучить возможность использования этих эффектов для задачи управления зоной энерговыделения пучка

При электронно пучковой модификации электропроводящих материалов в (иэрт нан Украины) Модификация трубчатыми СРЭП

Особенности процессов модификации металлов и сплавов пучками электронов

Воздействие трубчатого СРЭП на металлическую мишень приводит к абляционному выбросу материала, что может рассматриваться как способ получения дисперсных материалов. Следует заметить, что данные пучки представляют интерес не только как модифицирующий инструмент, но и как тестовый, т.е. моделирующий действие на материал экстремальных факторов (взрывы, ударные, температурные, радиационные воздействия) с целью определения его стойкости.

Ускоритель электронов

Внешний диаметр пучка

40 MM.

2...3 мм.

5...10 кДж.

Общий вид ускорителя

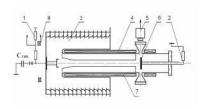
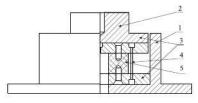
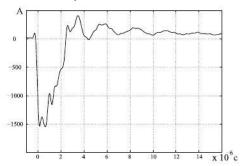
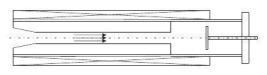
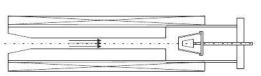



Схема магнитоизолированного диода


- 1 омический делитель напряжения:
- 2 токовый шунт;
- 3 ускорительная колонка;
- 4 соленоид;
- 5 ФЭУ;
- 6 коллектор;
- 7 анодная вставка;
- 8 пояс Роговского.


Сильноточный импульсный измерительный шунт

- 1 стакан (аллюминий);
- 2 крышка (латунь);
- 3 диски (латунь);
- 4 нихромовые проволочки;5 керамический изолятор.


Конструкция измерительного токового шунта

Расчетная область с внутренним конусом

Общий вид отклоняющих конусов

Расчетная область с двумя

Отклонение сильноточного электронного

Для численного моделирования был выбран метод "больших частиц" (PIC). Уравнение движения одной релятивистской частицы из всего ансамбля:

$$v = \frac{V^2}{mo} + \frac{V^2}{c^2} + \frac{V \times B - C^2 \times VE}{mo}$$

Основные расчетные уравнения для определения электромагнитного поля (для векторного потенциала принята нормировка по Кулону):

• Скалярный потенциал электрического поля:

$$\epsilon^{2} \phi = -\rho$$
.

с граничными условиями:

1. Условие Дирихле

$$\phi = p$$
, $(x, y, z) \in \Gamma_1$.

2. Условие Неймана

$$\phi \cdot n = q,$$
 (x, y,

 На границах раздела, где ε скачкообразно взменяет значение, применяются условия непрерывности

и

$$\epsilon_+ \quad \varphi_+ \cdot n = \epsilon_- \quad \varphi_- \cdot n, \qquad (x,y,z) \in \Gamma_c \, .$$

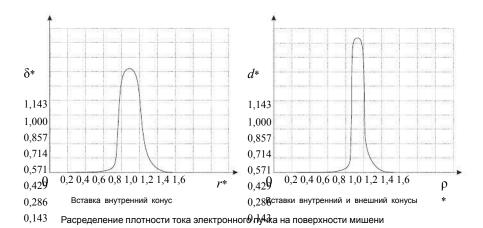
Векторный магнитный потенциал:
$$-\frac{1}{\mu} \frac{\partial A}{\partial t} + \sigma \frac{\partial A}{\partial t} + \epsilon \frac{\partial A}{\partial t} = -\sigma \phi - \epsilon \frac{\partial \phi}{\partial t} + \rho v.$$

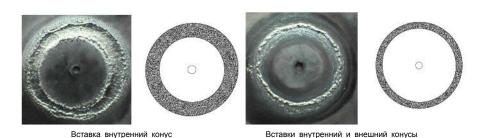
с граничными условиями:

1. Условие Дирихле

$$A = P, (x, y, z) \in \Gamma_1.$$

2. Однородное условие Неймана

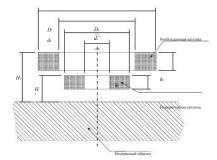

$$n \times A = 0, (x, y, z) \in \Gamma_2$$

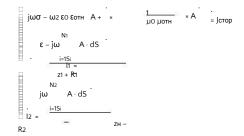

применяемое на плоскостях симметрии.

3. На границах раздела, где μ скачкообразно изменяет значение, применяются условия непрерывности

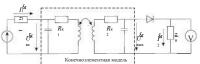
$$n \times A_+ = n \times A_-, \quad (x, y, z) \in \Gamma_c,$$

и





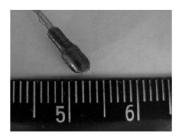
Реальный и расчитанный следы пучка на поверхности мишеней (в одном масштабе)


Анализ электропроводности облученных неферромагнитных

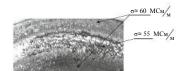
мишеней

Расчетная модель вихретокового преобразователя

Расчетная схема преобразователя

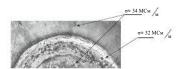

є - ЭДС генератора;

- регулируемое сопротивление;


zн – измерительное сопротивление;

R1_и R2_ - омические сопротивления катушек.

Анализ электропроводности облученных неферромагнитных мишеней


Внешний вид сборки возбуждающей и измерительной катушек

Результат измерения элетропроводности электротехнической меди

Внешний вид вихретокового датчика

Результат измерения элетропроводности сплава Д16

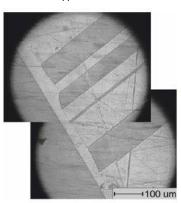
Анализ спектра валентных электронов облученного сплава Д16

Исследования спектра валентных электронов поверхности образцов сплава Д16 проводились методом рентгеновской фотоэлектронной спектросокопии на спектрометре XPS-800 Kratos. Давление в камере прибора составляло 5·10-8 торр. Фотоэлектроны возбуждались MgKα-излучением с энергией фотонов 1253,6 эВ. Параметры активирующето рентгеновского излучения: U = 15 кВ, J = 20 мА. Кинетическая энергия электронов анализировалась полусферическим электростатическим анализатором. Разрешение спектрометра ~ 1 эВ,

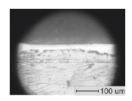
Спектры вате и ностоянного фона и фосплава Д16: транобработы вате и ностоянного фона и фосплава Д16: транобработы вате и на компьки е фосплава Д16: транобработы вате и ностояния и на компьки е фосплава Д16: транобработы вате и на компьки е фосплава Д16: трано

лизируемого слоя ~ 5 нм. Перед установкой в вакуум поверхность образца протиралась изопропиловым спиртом. Для уменьшения слоя углеводородных загрязнений образцы подвергались ионной бомбардировке в вакууме (Ar $_+$, E = 2, 5 кэB, скорость распыления 100 A/мин).

12-

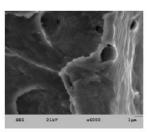

⊃ 0,6 ci

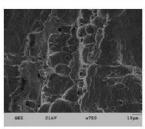
0,2 -

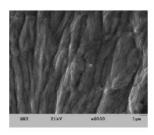

0.0

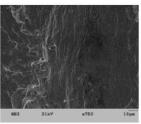
Анализ микроструктуры электротехнической меди

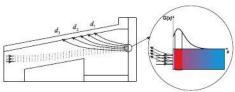
Исходное состояние

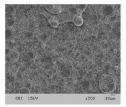

Облученное состояние

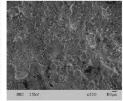


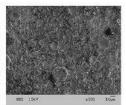

Фрактография электротехнической меди


Исходное состояние




Облученное состояние





Анализ продуктов конденсации электротехнической меди

d2

d3

	Размер, мкм	<2	3–4	5–6	7–15	16-30	>30
	d1	48%	26%	19%	5%	1,5%	0,5%
I	d2	64%	22%	12%	1,7%	0,2%	0,1%
100	d3	56%	23%	15%	5%	0.7%	0.3%

Анализ микротвердости электротехнической меди

Схема	Схема измерения микротвёрдости на поперечном сечении образум Па									
Область	Облучение со вставкой			Облучение без вставки						
	3о ₿ ыачени	я ®имир отверд	д ого коло ный б	®ин мишени	Зона	Исходный				
	плавле	терми-	образе	плавле	терми-	образе				
	-	ческого	Ц	-	ческого	Ц				
	ния	воздей		ния	воздей					
		_			-					
внутр.	80	вия	65	748	RNSBA	62				
центр.	7	9	6	851	761	5				
внешн.	90	732	494	774	80	681				
93 7	6	732	732		7	715				

Выводы

Основные результаты можно сформулировать в следующих выводах:

- 0 Разработана и создана примешенная оснастка, которая позволяет регулировать пространственное распределение энергии излучения в приповерхностном слое образцов, облучаемых трубчатым сильноточным релятивистским электронным пучком. 2
- Разработано и создано устройство для измерения импульсного электрического

тока,

- генерируемого в мишени, которое позволяет устанавливать корреляционные
 - зависимости с импульсами динамических нагрузок, возникающих при облучении 8 твердотельных мишеней трубчатым сильноточным релятивистским электронным пучком.
 - Установлено, что вследствие облучения сплава Д16 трубчатым сильноточным
 - 4 релятивистским электронным пучком, происходит изменение спектра валентных электронов, что проявляется в уменьшении значения электропроводности в зоне переплава на 5%.
 - Установлено, что при синтезе продуктов абляции, возникающих при облучении трубчатым сильноточным электронным пучком металлических мишеней, существует ряд факторов, влияющих на поле скоростей выброса вещества, его дисперсность и структуру покрытия. Среди установленных факторов основными

Выводы

0

и

В

Установлено, что после однократного облучения электротехнической меди трубчатым сильноточным релятивистским электронным пучком электропроводность переплавленного слоя уменьшается на 7%. Определено распределение микротвердости в поперечном сечении образца – наиболее упрочненная зона соответствует зоне плавления и зоне термического влияния. Показано, что изменения в структуре проявляются в изменении микротвердости

приводят к различиям в характере изломов медных образцов. В зоне переплава медного образца преобладающий механизм разрушения – хрупкое разрушение,

тоже время, для остальной части образца наблюдается вязкое разрушение.

Спасибо за внимание