Лекция № 12 Механические колебания

Алексей Викторович Гуденко

24/04/2012

План лекции

- Свободные незатухающие гармонические колебания:
 - 1. Пружинный маятник
 - 2. Математический маятник
 - 3. Физический маятник
- Затухающие колебания с вязким трением.
- Вынужденные колебания. Резонанс.
- Параметрический резонанс.

Колебательные процессы

- Колебание изменение состояния системы по периодическому или почти периодическому закону: маятник часов, груз на пружине, гитарная струна, давление воздуха в звуковой волне.
- Свободные (или собственные) колебания: колебания в системе, предоставленной самой себе: шарик в лунке, маятник.
- Вынужденные колебания колебания под действием внешней периодической силы: вибрации моста, качели.
- Автоколебания, параметрические колебания.

Свободные незатухающие гармонические колебания.

Пружинный маятник

- mx" = kx ⇒ mx" + kx = 0 ⇒
- $x'' + \omega_0^2 x = 0$ дифференциальное уравнение гармонических колебаний ($\omega_0^2 = k/m$)
- x = Acos(ω₀t + φ₀) гармоническое колебание A амплитуда колебаний ω₀ циклическая частота φ₀ начальная фаза ω₀t + φ₀ фаза колебаний
- T = 2π/ ω₀ период колебаний
- Изохронность: ω₀ определяется только свойствами системы и не зависит от амплитуды.
- F = -kx квазиупругая возвращающая сила

Скорость и ускорение при гармонических колебаниях

• Смещение: $x = A\cos(\omega_0 t + \phi_0)$

• Скорость:

 $v = x' = -\omega_0 A sin(\omega_0 t + \phi_0) = \omega_0 A cos(\omega_0 t + \phi_0 + \pi/2);$ $v_0 = \omega_0 A - амплитуда скорости;$ скорость опережает смещение x по фазе на $\pi/2$.

• Ускорение $a = -\omega_0^2 A cos(\omega_0 t + \phi_0) = \omega_0^2 A cos(\omega_0 t + \phi_0 + \pi)$ $a_0 = \omega_0^2 A -$ амплитуда ускорения; ускорение в противофазе со смещением

Энергия гармонических колебаний

• Потенциальная энергия:

$$\Pi = kx^{2}/2 = \frac{1}{2}kA^{2}\cos^{2}(\omega_{0}t + \varphi_{0})$$

• Кинетическая энергия:

$$K = mv^2/2 = \frac{1}{2}m\omega_0^2 A^2 sin^2(\omega_0 t + \phi_0) = \frac{1}{2}κA^2 sin^2(\omega_0 t + \phi_0)$$

• Полная энергия:

$$E = \Pi + K = const = \frac{1}{2}kA^2 = \frac{1}{2}mv_0^2$$

• Для гармонических колебаний:

$$= <\Pi> = \frac{1}{2}E$$

Энергетический метод для колебательных систем с одной степенью свободы

- q обобщённая координата (смещение, угол поворота)
 q' – обобщённая скорость (скорость смещения, угловая скорость)
- Уравнение энергии: $\frac{1}{2}$ к $q^2 + \frac{1}{2}$ $\mu q'^2 = const$ $\Pi = \frac{1}{2}$ к $q^2 потенциальная энергия <math>K = \frac{1}{2}$ $\mu q'^2 кинетическая энергия <math>\omega^2 = \kappa/\mu \mu$ циклическая частота $\kappa 3$ ффективная жёсткость системы $\mu \mu$ инерционность системы

Математический маятник.

- Математический маятник материальная точка на нерастяжимой лёгкой нити в поле тяжести Земли.
- Энергетический метод:
 θ угол отклонения нити от вертикали (обобщённая координата).
 - 1. Потенциальная энергия: $\Pi = \text{mgL}(1 - \cos\theta) \approx \frac{1}{2} \text{ mgL}\theta^2 = \frac{1}{2} \kappa\theta^2$ k = mgL - эффективная жёсткость
 - 2. Кинетическая энергия: $K = \frac{1}{2} m(L\theta')^2 = \frac{1}{2} mL^2 \theta'^2 = \frac{1}{2} \mu\theta'^2$ $\mu = \frac{1}{2} mL^2 инерционность системы$
 - 3. Уравнение колебаний: $\frac{1}{2}$ к $\theta^2 + \frac{1}{2}$ $\mu\theta'^2 = const$
 - 4. $\omega_0^2 = \kappa/\mu = g/L$; $T = 2\pi/\omega_0 = 2\pi(L/g)^{1/2}$

Ангармонический математический маятник

- ½к θ^2 + ½ µ θ'^2 = const ⇒ θ'' + $\omega_0^2 \theta$ = 0 линеаризованное уравнение
- θ " + $\omega_0^2 \sin\theta = 0$ нелинеаризованное **ангармоническое** уравнение; $T = T_0(1 + \theta_0^2/16 + 9\theta_0^4/64 + ...)$ период зависит от амплитуды (θ_0 амплитуда)

Физический маятник

- Физический маятник твёрдое тело, совершающее колебания вокруг неподвижной горизонтальной оси.
- Энергетический метод:
 - 1. Потенциальная энергия: $\Pi = \text{mga}(1 - \cos\theta) \approx \frac{1}{2} \text{mga}\theta^2$
 - 2. Кинетическая энергия: $K = \frac{1}{2}I\theta'^2$, $I = I_c + ma^2$ момент инерции относительно оси O
 - 3. Уравнение колебаний: $\frac{1}{2}$ mga $\theta^2 + \frac{1}{2}$ I θ'^2 = const
 - 4. $\omega_0^2 = \text{mga/I}$; $T = 2\pi/\omega_0 = 2\pi(I/\text{mga})^{1/2}$

Приведённая длина. Центр качания. Теорема Гюйгенса. Оборотный маятник и измерение д

- = I/ma длина математического маятника с тем же пёриодом колебаний
- $L_{np} = I/ma = (I_c + ma^2)/ma = a + I_c/ma$
- Центр качания О' расположен на прямой ОС расстоянии L_{пр} от точки подвеса О Теорема Гюйгенса

Точка подвеса и центр качания являются "сопряжёнными" точками: если маятник подвесить за центр качания, то его период не изменится. Доказательство: $L_{np} = a + I_c/ma \Rightarrow a^2 - L_{np}a + I_c/m = 0 \Rightarrow$

Оборотный маятник и измерение g: экспериментально определяют расстояние между сопряжёнными точками OO' = L_{np} и рассчитывают g по формуле: $g = L_{np} \omega_0^2$

Крутильные колебания

- Диск на упругой нити:
 Момент упругих сил M_z = kθ, k коэффициент "крутильной" жёсткости
- $I_0\theta$ " = $k\theta \Rightarrow \theta$ " + $(k/I_0)\theta = 0 \Rightarrow \omega_0^2 = k/I_0$

Затухающие колебания.

- Сила вязкого трения ⊢_{тр} = -β∨
- mx" = kx − β v \Rightarrow mx" + β v + kx = 0 \Rightarrow x" + 2γ x' + ω_0^2 x = 0 дифференциальное уравнение колебаний с затуханием; $\gamma = \beta/2$ m − коэффициент затухания ω_0^2 = k/m − собственная частота
- если $\gamma < \omega_0$, то $x = a_0 e^{-\gamma t} cos(\omega t + \phi_0)$, $\omega = (\omega_0^2 \gamma^2)^{1/2}$ частота затухающих колебаний; $a_0 e^{-\gamma t}$ амплитуда затухающих колебаний

Характеристики затухающих колебаний

- Время релаксации τ это время, за которое амплитуда колебаний уменьшается в е раз: $\tau = 1/\gamma$
- Логарифмический декремент затухания: $\lambda = \ln[a(t)/a(t+T)] = \gamma T = T/\tau$
- Число колебаний, за которое амплитуда уменьшается в е раз
 - $N_{\rm e}^{} = au/{
 m T} = 1/\lambda$ Слабое затухание $N_{\rm e}^{} = au/{
 m T} = \omega/2$
- Слабое затухание $N_e = \tau/T = \omega/2\pi\gamma >> 1 \Rightarrow \gamma << \omega \approx \omega_0$

Диссипация энергии. Добротность.

- $dE/dt = -\beta v^2$ мощность силы трения
- $dE/dt = -\beta v^2 = -(2\beta/m) (mv^2/2) = -4\gamma K$
- Слабое затухание: $\gamma << \omega_0 \Leftrightarrow <K> = \frac{1}{2} \to dE/dt = -2\gamma E \Leftrightarrow E = E_0 e^{-2\gamma t}$
- Убыль энергии за период $\Delta E_T = 2\gamma TE$
- Убыль энергии при изменении фазы на 1 рад: $\Delta E = \Delta E_T/2\pi = (2\gamma/\omega)E_0$
- Добротность: $Q = E/\Delta E = \omega/2\gamma = \pi N_e$

Вынужденные колебания. Векторные диаграммы. Резонанс.

- mx" + βv + kx = Fcosωt ⇒
- $x'' + 2\gamma x' + \omega_0^2 x = f \cos \omega t$, f = F/m
- Вынужденные колебания ищем в виде:
 x = Bcos(ωt φ)
- Векторная диаграмма:
 x = Acos (ωt + φ₀) проекция на ось ОХ радиусвектора длиной А, вращающегося против часовой стрелки с угловой скоростью ω от начального положения φ₀

Вынужденные колебания. Векторные диаграммы. Резонанс.

- Из векторной диаграммы:
 - амплитуда $B = f/((\omega^2 - \omega_0^2)) + 4\gamma^2\omega^2)^{1/2}$
 - Фаза $tg \varphi = 2\gamma \omega/(\omega_0^2 \omega^2)$
- В резонансе (при малых γ)
 В $_{\text{max}} \approx \text{B}(\omega_0) = \text{f}/2\gamma\omega_0 \Rightarrow \text{B}_{\text{max}}/\text{B}_{\text{стат}} = \omega_0/2\gamma = \text{Q}$
- Вблизи резонанса:
 B = B_{max} γ/((ω ω₀)² + γ²)^{1/2} ⇒ ширина резонансной кривой Δω = 2γ

Параметрический резонанс

- Параметрический резонанс возбуждение незатухающих колебаний периодическим изменением параметров колебательной системы
- Пример: маятник с изменяющейся длиной (качели)
 - 1. Работа против тяжести: $A_1 = mg\Delta h(1 cos \phi_0) \approx \frac{1}{2} mg\Delta h\phi_0^2 = \frac{1}{2} mv_0^2 \Delta h/L$
 - 2. Работа против центробежной силы: $A_2 = mv_0^2 \Delta h/L$
 - 3. приращение энергии за период: $\Delta E = 2(A_1 + A_2) = 6 \Delta h/L \text{ mv}_0^2/2$
 - 4. $dE/dt = 6 \Delta h/L E/T = E/\tau \Rightarrow E = E_0 e^{t/\tau}$