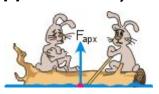
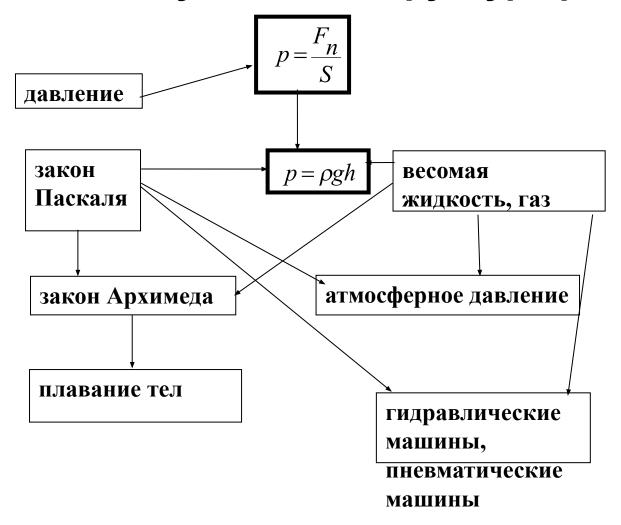

Методический анализ темы «Давление твердых тел, жидкостей и газов» (25 часов)

Узловые вопросы темы:


- 1. Давление твердого тела на твердое тело.
- 2. Давление извне на газ или жидкость.
- 3. Весовое давление (жидкость, атмосферное давление)
- 4. Тело в весомой жидкости, газе

Знания и умения, формируемые в теме:

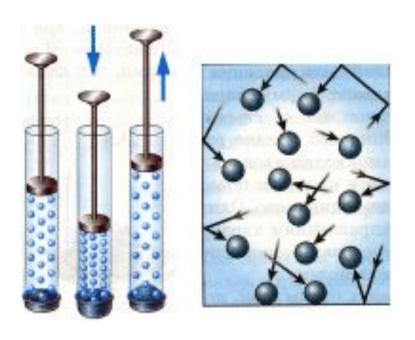

Знания:

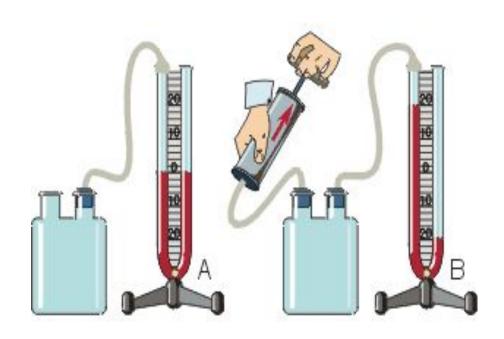
- Физические величины: давление, давление жидкости, выталкивающая сила, нормальное атмосферное давление.
- Закон Паскаля.
- Физические явления: давление газа, атмосферное давление, плавание тел.
- Приборы и установки: сообщающиеся сосуды, гидравлические машины, барометр-анероид, манометр, жидкостный насе

Умения: применять знания о строении жидкостей и газов для объяснения закона Паскаля; применять знания об архимедовой силе на практике; объяснять устройство и уметь пользоваться барометром; рисовать схему и объяснять действие гидравлической машины, сообщающихся сосудов; решать задачи на применение закона Паскаля, расчет архимедовой силы, давления, поведения тел в жидкости.

Связь между темами, структура раздела

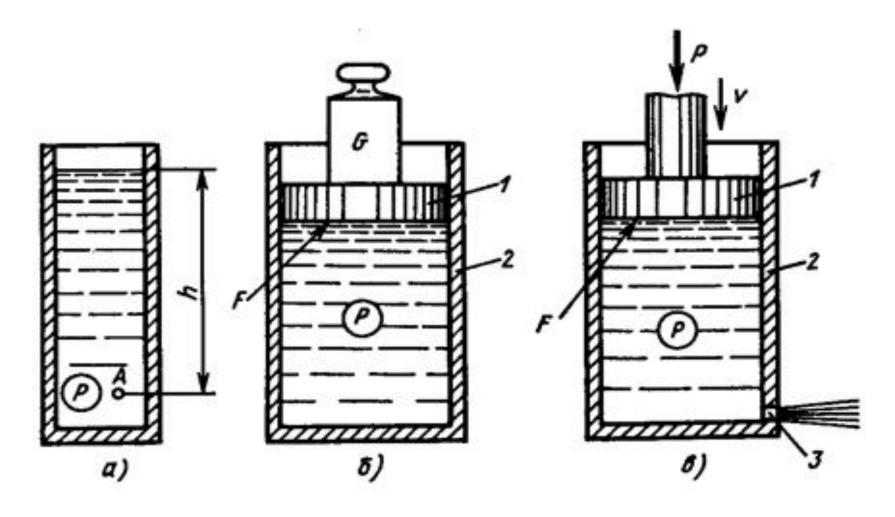
1. Основные элементы понятия давления

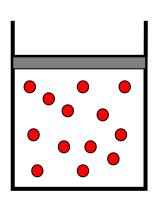


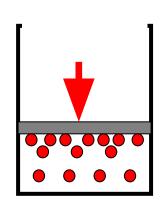

- Род скалярная физическая величина
- Вид характеризует действие силы на поверхность
- Словесное определение
- Определительная формула: $p=\frac{1}{S}$
- Существенные признаки: завысит С силы, направленной перпендикулярно на поверхность, от ее площади (эксперимент, житейский опыт)
- Единицы измерения
- Применение на практике
- Решение задач

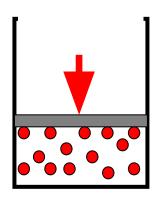
Методические рекомендации к изучению темы «Давление газа»

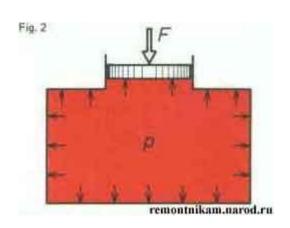
- Углубление представлений о молекулярном строении газов;
- Формирование первоначальных представлений остатистическом характере давления;
- Опытное изучение зависимости давления газа от температуре при постоянном объеме и массе газа, объяснение на основе молекулярных представлений


опытное изучение зависимости оавления газа от объема при постоянной температуре и массе газа;


- а) Объяснение с молекулярной точки зрения;
- б) постановка опыта


Способы создания давления на жидкость и газ



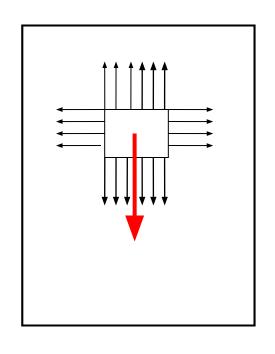

а) весовое давление; б) давление извне на поверхность неподвижной жидкости: в) давление извне на движущуюся жидкость (гидродинамика)

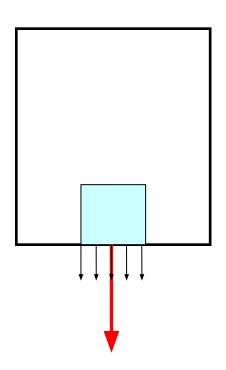
2. а)Объяснение передачи давления жидкостью или газом с молекулярной точки зрения

- 1. Молекулы жидкости, так же как и молекулы газа перемещаются внутри жидкости, изменяя свое положение. Они подвижны, поэтому расположены равномерно по всему объему.
- 2. При действии силы на поршень, в начальный момент концентрация молекул около поршня больше, чем в других местах.
- 3. Вследствие подвижности молекул очень быстро их распределение выравнивается. Концентрация увеличилась во всем объеме, значит, давление одинаково возросло во все объеме.

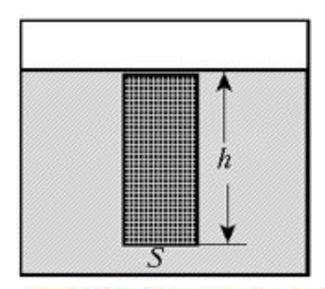
2б). Закон Паскаля: давление, оказываемое на жидкость или газ передается по всем направлениям одинаково

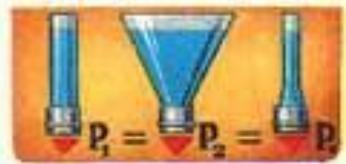
Опыты, объясняемые законом Паскаля





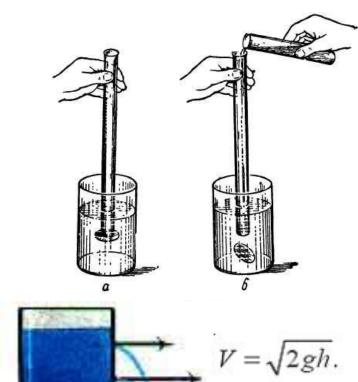
Блез Паскаль (1623-1662)великий французский философ, математик, физик. Сформулировал закон передачи давления газами и жидкостями, вывел формулу давления жидкостей, вывел принципы действия гидравлических машин.


Сравнение передачи давления жидкостью и твердым телом



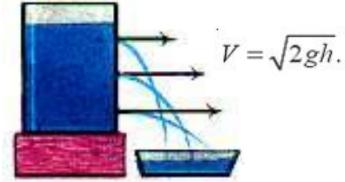
Жидкости передают давление по всем направлениям одинаково, твердые тела передают давление в направлении действующей силы.

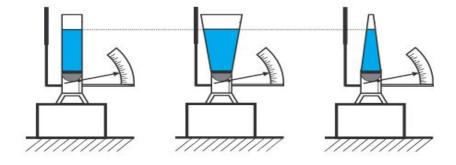
3. К изучению темы «давление в жидкости и газе» (весовое давление)


Гидростатический парадокс Паскаля

Вывод формулы и опыты по гидростатическому давлению

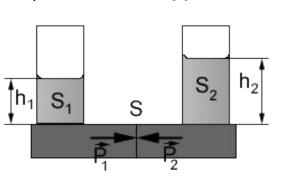
$$m = \rho V;$$
 $V = Sh;$
 $m = \rho Sh;$
 $P = gm;$
 $P = g\rho Sh;$
 $p = \frac{P}{S};$ $p = \frac{g\rho Sh}{S};$


$$p = \rho g h$$


Демонстрация гидростатического давления

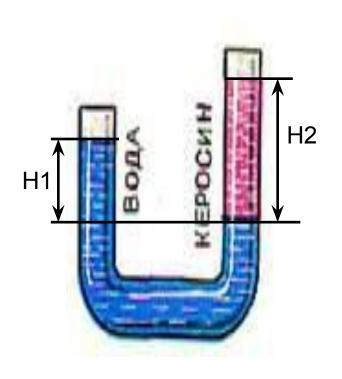
Прижатая к дну пластинка отпадает, когда высота жидкости в трубке сравнивается с высотой уровня воды в сосуде

Опыт Торричелли для давления жидкости


Тема «сообщающиеся сосуды».

Решаемые вопросы: а) Почему жидкость в сообщающихся сосудах устанавливается на одном уровне?
б) Всегда ли это происходит?

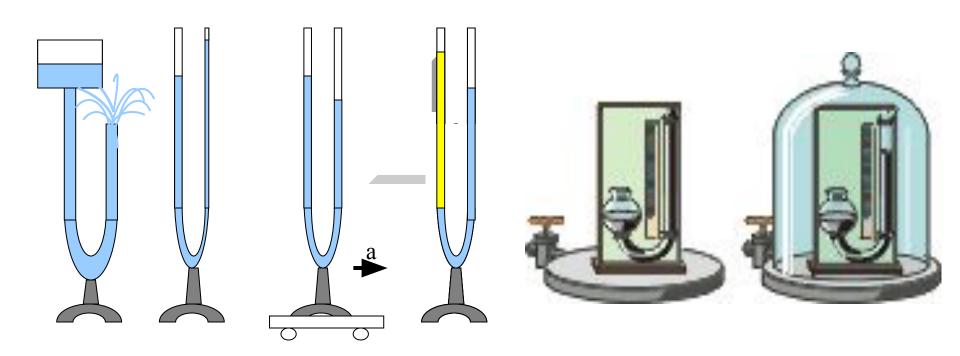
Сосуды соединенные между собой в нижней части и открытые в верхней называются сообщающимися сосудами.


Закон сообщающихся сосудов:

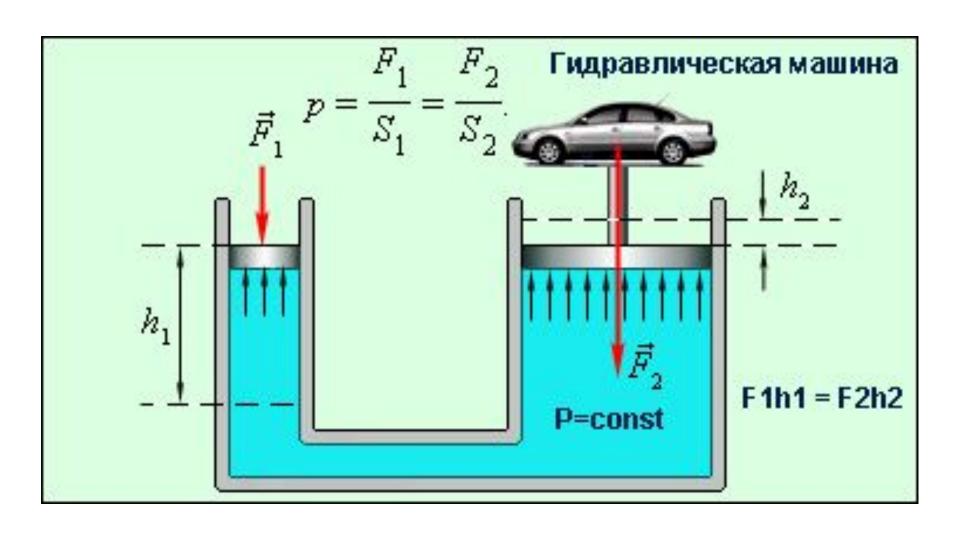
- Пусть в правой части высота уровня жидкости относительно выбранной линии больше в левой, значит давление P2 > P1;
- Жидкость переливается влево до тех пор, пока не сравняются уровни, а значит и давления.

В сообщающихся сосудах любой формы и сечения поверхности однородной жидкости устанавливаются на одном уровне

Всегда ли выполняется закон? Вывод формулы связи плотности жидкостей с высотой столба


$$\rho_{1}gH_{1} = \rho_{2}gH_{2}$$

$$\frac{\rho_{1}}{\rho_{2}} = \frac{H_{2}}{H_{1}}$$

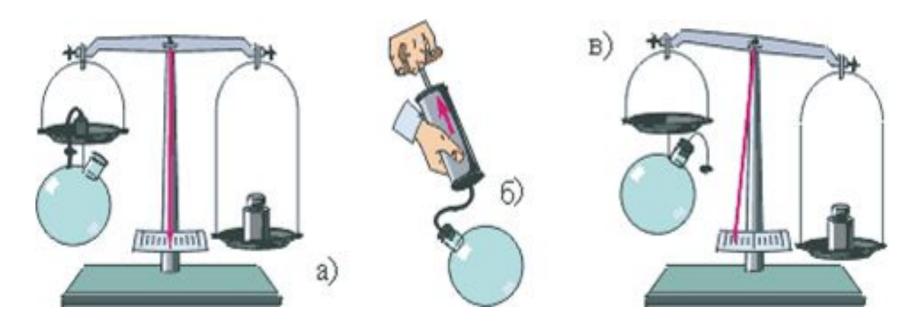

При равенстве давлений высота столба жидкости с большей плотностью будет меньше столба жидкости с меньшей плотностью

Случаи нарушения закона сообщающихся сосудов

а) при движении жидкости; б) в случае, когда одно колено является капиллярной трубкой; в) при движении сообщающихся сосудов с ускорением; г) при разнородных жидкостях; д) при разных давлениях над поверхностями жидкостей.

Установки (манометры, поршневые жидкостные насосы, гидравлический пресс), объясняемые законом Паскаля и давлением жидкости:

Содержание темы «Атмосферное давление»

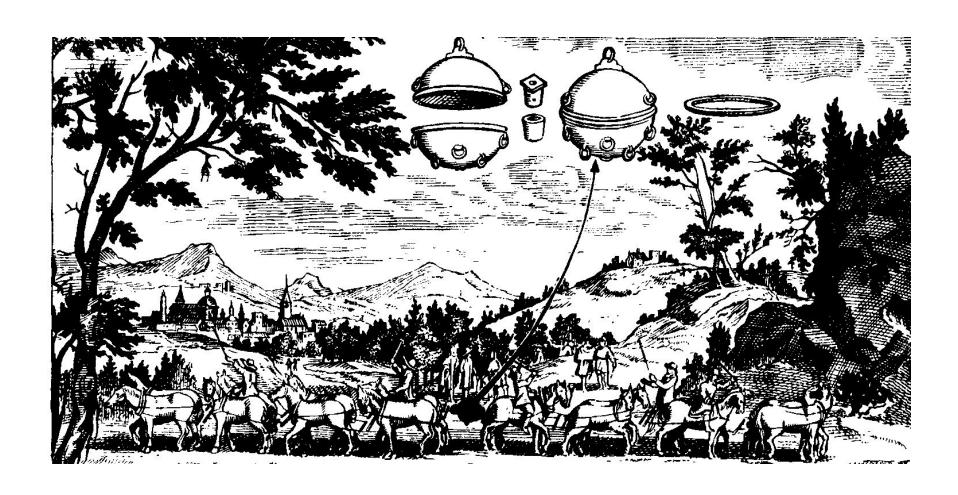

- § 40. Вес воздуха. Атмосферное давление.
- §41. Почему существует воздушная оболочка Земли.
- § 42. Измерение атмосферного давления. Опыт Торричелли
- *§43. Барометр-анероид*
- §44. Атмосферное давление на различных высотах

Торричелли изобретает барометр (со старинного рисунка)

Эванджелиста Торричелли (1608-1647), знаменитый итальянский физик, ученик Галилея, открыл атмосферное давление.

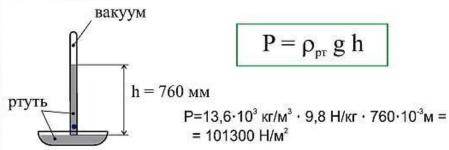
Опытное доказательство веса воздуха (опыт Галилея)

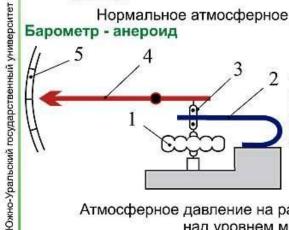
- а) шар уравновешивается на рычажных весах.
- б) воздух откачивается из колбы и крепко закрывается пробкой;
- в) колба снова укрепляется к чашке весов. Равновесие чашек нарушено. Разница в массе случая а) и случая в) дает массу воздуха в шаре.


Объяснение атмосферы с молекулярной точки зрения.

Признак атмосферного давления – прижимающая поверхность сила, условие – вес воздуха, причина – притяжение молекул воздуха к Земле и их тепловое, беспорядочное движение

3. Опыт Торричелли. Расчет атмосферного давления


Опыт Герике (бурмистр города Магдебурга) по доказательству существования атмосферного давления (старинная гравюра)


ГИДРОСТАТИКА

Опыт Торричелли. Измерение атмосмерного давления

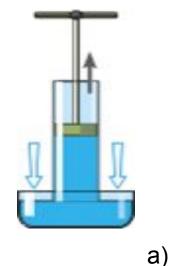
Опыт Торричелли

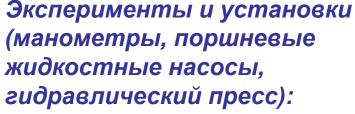
Нормальное атмосферное давление Р=101300 Па Барометр - анероид

РНПО Росучприбор

- металлическая коробочка
- 2 пружина
- 3 передаточный механизм
- 4 стрелка указатель
- 5 шкала

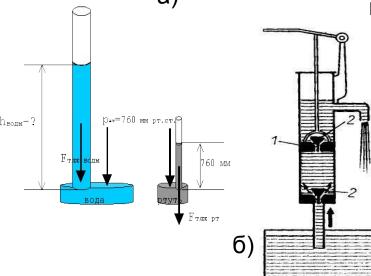
Учебный транспарант по изучению опыта Торричелли

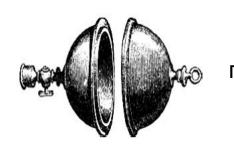

Барометры


Изменение давления с высотой

Атмосферное давление на различных высотах

Эксперименты и устройства, доказывающие атмосферное давление





- а) Вода поднимается за поршнем;
- б) Действие насосов объясняется атмосферным давлением.

в) Атмосферное давление не дает воде пролиться из стакана.

B)

г) Магдебургские шары, с помощью которых в XVII веке подтвердили существование атмосферного давления

4. Тело в весомой жидкости или газе (10 уроков)

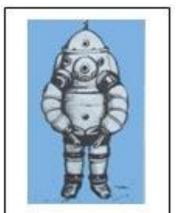
Содержание темы:

§48. Действие жидкости и газа на погруженные в них тела.

§49. Архимедова сила.

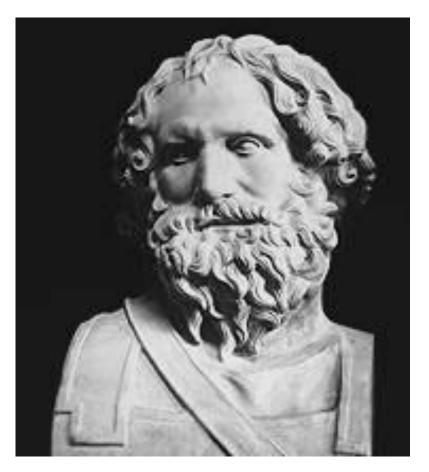
§50. Плавание тел.

§51. Плавание судов.

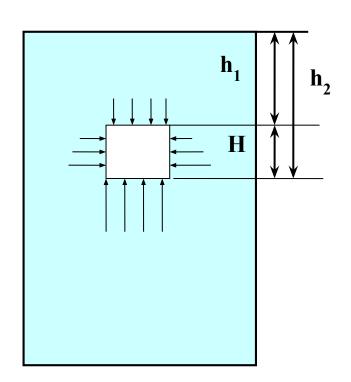

§52. Воздухоплавание.

Лабораторная работа «Определение выталкивающей силы, действующей на погруженное в жидкость тело».

Лабораторная работа «Выяснение условий плавания тела в жидкости».

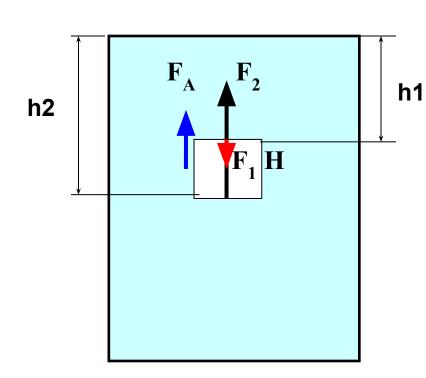

Решение задач.

Контрольная работа


Методика изучения закона Архимеда и следствий из него

Древнегреческий мыслитель, механик, астроном, военный инженер, физик. Основоположник статики как раздела механики, сформулировал основные положения гидростатики, условия плавания тел, существование выталкивающей силы в весомой жидкости.

Архимед (287 – 212 г.до н.э.)


Дедуктивное изучение темы: самостоятельный расчет выталкивающей силы

Рассчитать, на сколько больше давит жидкость на нижнюю грань бруска, чем на верхнюю?

- Жидкость ... (задать)
- Объем бруска ... (задать)
- Площадь сечения бруска ... (задать)
- Глубина погружения верхней части ... (задать)
- Давление на верхнюю грань ... (рассчитать)
- Давление на нижнюю грань ... (рассчитать)
- Сила давления на верхнюю грань, F1 ... (рассчитать)
- Сила давления на нижнюю грань, F2 ... (рассчитать)
- F2 F1 = ... (рассчитать, сделать вывод)

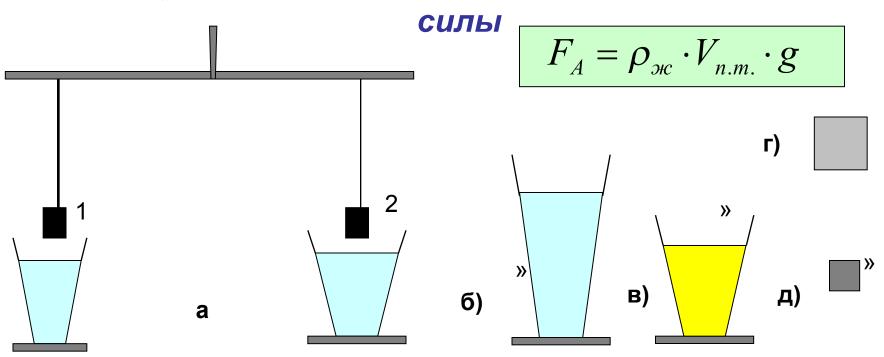
Вывод формулы выталкивающей силы

$$p_1 = \rho g h_1$$
 $F_1 = \rho g h_1 S$ $p_2 = \rho g h_2$ $F_2 = \rho g h_2 S$ FA = F2 - F1

$$FA = \rho g h_2 S - \rho g h_1 S = \rho g S (h_2 - h_1) = \rho g H S$$


$$F = \rho_{\mathcal{H}C} g V_m \qquad m_{\mathcal{H}C} = \rho_{\mathcal{H}C} V_m$$

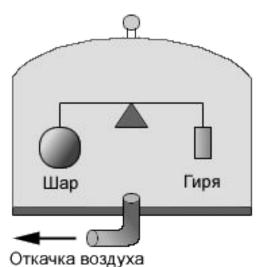
FA = Px


Выталкивающая сила равна весу жидкости в объеме этого тела

Последовательность постановки опыта с ведерком Архимеда

- а) Определить вес тела в воздухе. Отметить показание динамометра.
- б) Определить вес тела в воде. Отметить показание динамометра. Вывод: на тело действует выталкивающая сила, направленная вертикально вверх.
- в) Налить в полый цилиндр воду, объемом равным объему сплошного цилиндра.
- г) Наблюдать за растяжением пружины и отметить его. Вывод: выталкивающая сила равна весу вытесненной воды.

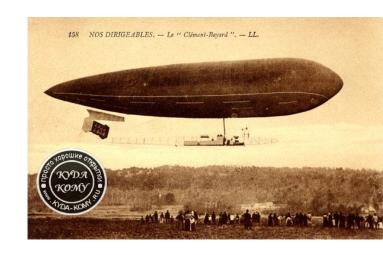
Демонстрации по варьированию существенными и несущественными признаками Архимедовой

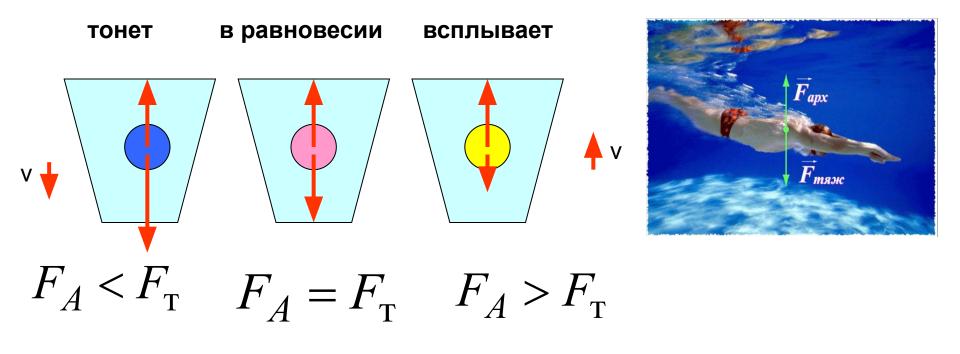


- а) уравновесить на рычаге два тела одинаковой массы и объема;
- б) изменять глубину погружения в жидкость груза 2;
- в) опустить груз 2 в другую жидкость; г) заменить груз 2 на груз большего объема, но такой же массы; д) заменить груз 2 на груз такого же объема, но другой массы.

По каждому опыту сделать вывод.

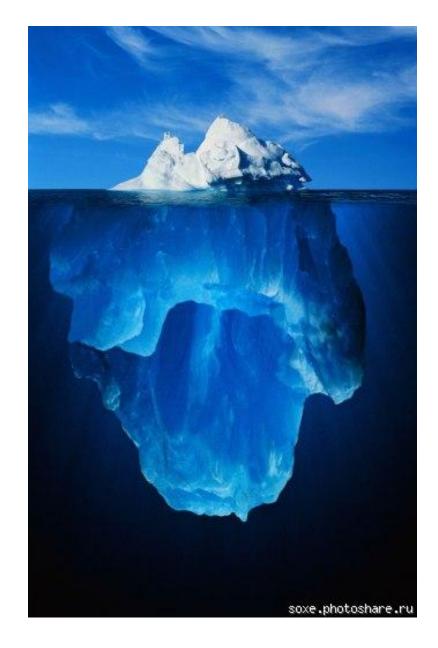
Углубление понятия «сила Архимеда»: выталкивающая сила в газах, воздухоплавание, подъемная сила


Демонстрация выталкивающей силы в воздухе


Современные аэростаты и дирижабль

Подъемная сила – сила тяжести груза, который может поднять аэростат:

$$F_{no\partial} = \rho_{63} g V_{a \ni p} - m g_{a \ni p}$$



Методические рекомендации по изучению плавания тел (сравнение сил, сравнение плотностей)

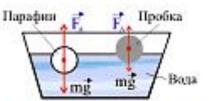
$$F_{\mathrm{T}} = mg = \rho_{\mathrm{T}} \cdot V_{n.m.} \cdot g$$
 $F_{A} = \rho_{\mathcal{H}} \cdot V_{n.m.} \cdot g$

а) при $\rho_m > \rho_{\mathcal{HC}}$ тело тонет; б) при $\rho_m = \rho_{\mathcal{HC}}$ тело находится в жидкости в равновесии; в) при $\rho_m < \rho_{\mathcal{HC}}$ тело всплывает.

Средняя плотность аэростатов уменьшается за счет нагревания воздуха внутри него

Плотность льда 900 кг/м3 – плавает, погрузившись на 9/10 объема в воду

ГИДРОСТАТИКА


Плавание тел

Вес плавающего тела всегда равен весу жидкости, вытесненной телом

$$\begin{array}{l} \rho_{\text{expx}} = 10^{3} \text{KeV/M}^{3} \\ \rho_{\text{expodes}} = 0, 2 \cdot 10^{3} \text{keV/M}^{3} \\ \rho_{\text{expodess}} = 0, 9 \cdot 10^{3} \text{keV/M}^{3} \end{array}$$

Забание 1: Докажите: чем меньше плотность тела по сращению с плотностью жидности, тем межьная часть объема тела погружена а жидность

Задание 2: Объясните, каков эффект увеличения или уменьшения размеров плавательного путыра.

Картезианский водолаз

Учебный транспарант по плаванию тел

Юнно-Урапьской посударственный университет

Не будешь готовиться к семинарским занятиям, будешь мыть сапоги и каску в Индийском океане! Однозначно!!!

конец лекции

