ВЕРИФИКАЦИЯ ПРОГРАММЫ COSMOS/M ДЛЯ РАСЧЕТА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ И УЗЛОВ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ АЭУ

В.Д. Белоусов, Г.П. Копенкина, Л.В. Короткая, Н.И. Мишустин, К.Г.Ротов ОАО ИК «ЗИОМАР», Подольск

Согласно [1] все программные средства, применяемые при обосновании безопасности объектов использования атомной энергии, должны быть аттестованы в Совете по аттестации программных средств при Технадзоре РФ.

В настоящее время многие отечественные и зарубежные конечно-элементные программы уже прошли процедуру верификации и аттестации. Это такие программы, как CAN, 3EHИT-95, ANSYS, NASTRAN и др. Нашим предприятием для расчетов напряженно-деформированного состояния элементов и узлов оборудования и трубопроводов АЭУ была выбрана зарубежная программа Cosmos/M. Это обусловлено тем, что нашему предприятию вместе с оборудованием приходится поставлять за границу и документацию на него, в том числе и расчеты по обоснованию прочности поставляемых изделий. А наши отечественные программы заказчик не знает (или не хочет знать). Конкретный же выбор программы Cosmos/M был определен тем, что программа находилась на стадии опробования и проверки на нашем предприятии с 1995 года. Причем зарекомендовала себя с хорошей стороны и не требует переучивания персонала. В РФ программный комплекс Cosmos/M версии 1.75 аттестован для расчета напряженно-деформированного состояния созтоя/М версии 1.75 аттестован для расчета конструкций объектов использования атомной энергии (ОИАЭ) в линейной постановке организациями «Росэнергоатом», ФГУП «Атомэнергопроект» и ООО ИСБ «Надежность» [2]. Примером аттестации программы Cosmos/M за рубежом может служить фирма «ШКОДА» [3].

Особенностью проведенной нами верификации явилось то, что при верификации программы Cosmos/M дополнительно использовались и примеры расчета реальных конструкций – цилиндрической оболочки с эллиптическим днищем, сферического резервуара на цилиндрической опоре, цилиндрической обечайки с плоской жесткой крышкой, расчет фланцевого соединения с плоской крышкой, расчет составного цилиндра. Эти примеры представлены ниже.

1. Определение напряженного состояния цилиндрической оболочки с эллиптическим днищем под действием равномерно распределенного давления (см. рис.1).

Входные данные.

- Е = 200000 МПа модуль упругости;
- v = 0.3 коэффициент Пуассона;
- r = 0.5 м радиус цилиндра по средней линии;
- Н = 0.5*r = 0.25 м высота эллиптического днища;
- t = 0.005 м толщина обечайки и днища;
- Р = 1 МПа внутреннее давление.
- <u>Конечно элементная модель</u>. В данной задаче использовались три конечно элементных модели. Для конечных элементов типа PLANE2D и SHELL3 использовалась сетка из 900 элементов. Для комбинации конечных элементов типа SHELL3 и SHELL4 использовалась сетка из 856 элементов.
- <u>Подобласть верификации</u>. Проверка точности расчета максимальных окружных и меридиональных напряжений в центре эллиптического дниша и вблизи зоны перехода обечайка эллиптическое днище (зона А, рисунок 1).

Аналитическое решение. Формулы для определения максимальных напряжений имеют следующий вид [4]:

зона А

- окружные напряжения;
- меридиональные напряжения

центр эллиптического днища

<u>Точность решения</u>. Сравнение результатов расчета окружных и меридиональных напряжений, полученных по программе Cosmos/M с использованием элементов типа PLANE2D, SHELL3 и комбинации элементов типа SHELL3 и SHELL4, с аналитическим решением представлены в таблице 1.

Таблица 1

	Центр эллиптического днища			Зона «А» обечайки				
Элемент	σ _{окр} , МПа	η, %	σ _м , МПа	η, %	σ _{окр} , МПа	η, %	σ _м , МПа	η, %
Теория	100	-	100	-	10.7	-	5	-
PLANE2D	99.85	0.2	99.85	0.2	10.58	1.1	4.95	1
SHELL3	102.9	2.9	102.9	2.9	10.64	0.6	5.05	1
SHELL3 + SHELL4	102.8	2.8	102.8	2.8	10.62	0.7	5.08	1.6

Совпадение результатов, представленных в таблице 1, можно считать удовлетворительным. В данной таблице η - относительная погрешность, %.

2. Определение экстремальных напряжений в зоне сопряжения шаровой емкости с цилиндрической опорой под действием веса шаровой емкости с жидкостью (см. рис.2).

Входные данные

- Е = 200000 МПа модуль упругости;
- v = 0.3 коэффициент Пуассона;
- r = 4.325 м радиус цилиндрической опоры;
- R = 5.25 м радиус сферической емкости;
- h1 = 0.025 м толщина стенки сферы;
- h2 = 0.02 м толщина стенки цилиндрической опоры;
- G = 6906000 H вес емкости с жидкостью.

<u>Конечно – элементная модель</u>. В данной задаче для элементов типа SHELL3 использовались три конечно – элементных модели со средними размерами элементов 339.6 мм, 169.8 мм и 84.49 мм.

<u>Подобласть верификации</u>. Проверка точности расчета экстремальных напряжений в зоне сопряжения шаровой емкости с цилиндрической обечайкой (зона А, рисунок 2) при различных конечно – элементных схемах.

<u>Аналитическое решение</u>. Аналитическое решение данной задачи описано в [4]. В таблице 2 помещены результаты расчета, приведенные в этой же работе.

<u>Точность решения</u>. Сравнение результатов расчета экстремальных напряжений в зоне сопряжения шаровой емкости с цилиндрической обечайкой (зона A, рисунок 2), полученных по программе Cosmos/M с использованием элементов типа SHELL3, с аналитическим решением представлены в таблице 2.

 Экстремальные напряжения в плоскости Z = 0

 Емкость
 Опора

 σ, МПа
 η, %
 σ, МПа
 η, %

 90
 66

 62.67
 30.4
 50.9
 23

61.4

64.7

7

2

В данной таблице:

σ - экстремальные напряжения;

Средний

размер

элемента, мм

Теория

339.6

169.8

84.49

74.74

77.44

η- относительная погрешность.

Из результатов, представленных в таблице 2 следует, что точность решения в целом зависит от размера элемента – чем меньше элемент, тем выше точность решения. Причем чем выше градиент изменения напряжений (сравним емкость с опорой), тем требуется меньший размер элемента.

17

14

3. Определение максимальных продольных напряжений в цилиндрической оболочке с жесткой плоской крышкой под действием внутреннего давления (см. рис.3).

<u>Входные данные</u>

- Е = 200000 МПа модуль упругости;
- v = 0.3 коэффициент Пуассона;
- Н = 0.03 м толщина днища;
- h = 0.003 м толщина цилиндрической обечайки;
- D = 0.2 м диаметр цилиндрической обечайки;
- Р = 1 МПа внутреннее давление.

<u>Конечно – элементная модель.</u> В данной задаче для элементов типа SHELL3 использовалась конечно – элементная модель, состоящая из 1726 узлов (см. рис. 4).

<u>Подобласть верификации.</u> Проверка точности расчета максимальных продольных напряжений в цилиндрической оболочке с жесткой плоской крышкой под действием внутреннего давления (один из вариантов краевой задачи).

Аналитическое решение. Аналитическое решение данной задачи описано в [5].

Максимальные продольные напряжения в цилиндрической оболочке возникают в краевой зоне в районе сопряжения оболочки и днища

$$\sigma = \left[\frac{1}{2} + \frac{3(2-v)}{2\sqrt{3(1-v^{2})}}\right]\frac{PR}{h}$$

<u>Точность решения</u>. Сравнение результатов расчета максимальных напряжений, полученных по программе Cosmos/M с использованием элементов типа SHELL3, с аналитическим решением представлены в таблице 3.

Таблица 3

Элемент	Напряжения, МПа	Погрешность, %
Теория	68.11	-
SHELL3	59.75	12.3

Совпадение результатов, представленных в таблице 3, для элемента SHELL3 можно считать удовлетворительным.

Для иллюстрации одной из графических возможностей программы на рисунке 5 представлены результаты расчета напряженно-деформированного состояния цилиндрической обечайки с плоской жесткой крышкой в графической форме.

Название задачи.

Определение максимальных напряжений в крышке при трех режимах работы фланцевого соединения:

- затяг шпилек
- рабочие условия
- условия гидроиспытаний

Входные данные

E = 200000 МПа – модуль упругости для стали; Еп = 3000 МПа – модуль упругости материала

прокладки;

v = 0.3 – коэффициент Пуассона;

Alfa = 0.115 *10-4 ед/оК – коэффициент линейного расширения для стали;

F3 = 6178.5 H – усилие начального затяга шпильки; Pp = 0.12 МПа – рабочее давление;

Рп = 0.15 МПа – давление гидроиспытаний

Геометрия соединения представлена на рисунке 6.

<u>Конечно – элементная модель</u>. На рисунке 7 представлена конечно – элементная модель соединения, состоящая из 3396 узлов и 3003 элементов.

	Усилие	начального	затяга
моделирова.	пось	зад	данием
соответствун	ощей	температур	ы в
шпильке.	Задача	решала	сь в
осесимметрі	ичной	постановк	e c
использован	ием	элемента	типа
PLANE2D.			

<u>Подобласть верификации</u>. Рассматриваются максимальные эквивалентные напряжения в крышке при трех режимах работы фланцевого соединения:

- затяг шпилек

- рабочие условия
- условия гидроиспытаний

<u>Аналитическое решение</u>. Ввиду отсутствия аналитического решения, решение по программе Cosmos/M сравнивалось с численным решением, полученным по аттестованной программе CAN [6].

<u>Точность решения</u>. В таблице 4 представлено сравнение результатов вычисления максимальных напряжений в крышке, полученных по программе Cosmos/M с использованием элементов типа PLANE2D, с решением аналогичной задачи по программе CAN.

Таблица 4

Deuron	Напряже	Погрешность, %	
Режим	Режим Комплекс CAN Комплекс Cosm		
Затяг шпилек	29	30.3	4.5
Рабочий режим	83	81.16	2.2
Гидроиспытания	100	93.88	6.1

Совпадение результатов, представленных в таблице 4, можно считать удовлетворительным.

5. Определение напряжений в составном, соединенном с натягом цилиндре.

Входные данные

Е = 200000 МПа – модуль упругости для стали;

v = 0.3 – коэффициент Пуассона;

α = 0.115 ед/ К – коэффициент линейного расширения для стали;

 $\Delta = 0,1_{MM}$ - величина натяга;

- а = 50 мм внутренний радиус первого цилиндра;
- с = 100 мм внутренний радиус второго цилиндра;
- b = 150 мм наружный радиус второго цилиндра;

Геометрия соединения представлена на рисунке 8

Рис. 8

<u>Конечно – элементная модель</u>. На рисунке 9 представлена конечно – элементная модель соединения, состоящая из 602 узлов и 546 элементов типа PLANE2D. Натяг моделировался заданием соответствующей температуры в первом цилиндре. Рассматривалось плоско - деформированное напряженное состояние.

Для плоской деформации

$$\Delta t = \frac{\Delta}{\alpha c (1+\mu)} = 66.89^{\mathbb{N}} K$$

<u>Подобласть верификации</u>. Рассматриваются контактное давление и окружные напряжения на внутренней и наружной поверхностях составного цилиндра.

Аналитическое решение. Аналитическое решение данной задачи описано в [7].

Контактное давление

$$P_{k} = \frac{E\Delta}{2c^{3}} \frac{(c^{2} - a^{2})(b^{2} - c^{2})}{b^{2} - a^{2}},$$

Окружные напряжения на внутренней поверхности составного цилиндра

$$\sigma_t = P_k \frac{2c^2}{c^2 - a^2}$$

Окружные напряжения на наружной поверхности составного цилиндра

$$\sigma_t = P_k \frac{2c^2}{b^2 - c^2}$$

<u>Точность решения</u>. В таблице 5 представлено сравнение результатов вычисления контактного давления и окружных напряжений на внутренней и наружной поверхностях составного цилиндра, полученных по программе Cosmos/M с использованием элементов типа PLANE2D.

Таблица 5

Комплекс	Параметры					
	σ _t ,МПа на внутр. пов-ти	η, %	σ _t ,МПа на нар. пов-ти	η, %	Р _k ,МПа	η, %
Теория	125	-	93.9	-	46.87	-
PLANE2D	129.9	3.8	91.3	2.8	43.93	6.27

В данной таблице:

η- относительная погрешность.

Совпадение результатов, представленных в таблице 5 для элементов типа PLANE2D, можно считать удовлетворительным.

Все приведенные выше примеры расчета напряженно-деформированного состояния реальных конструкций в дальнейшем могут войти в библиотеку верификационных примеров и использоваться для аттестации других программ. Естественно, в связи с ограничением на объем материала, возможного для представления в рамках доклада, полную информацию о процедуре проведенной верификации изложить невозможно. Это касается верификации всех типов выбранных конечных элементов и их комбинации, действующих нагрузок, тестовых задач, сходимости решения, методов решения, быстродействия программы и др. Все подробности заинтересованные лица и организации могут найти в верификационном отчете [8]. Аттестационный паспорт зарегистрирован Федеральной службой по экологическому, технологическому и атомному надзору в научно-техническом центре по ядерной и радиационной безопасности [9].

Паспорт на ПО «КОСМОС»

№577	№217
РЕГИСТРАЦИОННЫЙ НОМЕР ПС В ЦОЭП ПРИ РНЦ КИ	РЕГИСТРАЦИОННЫЙ НОМЕР ПАСПОРТА АТТЕСТАЦИИ ПС
06.12.2004	19.09.2006
дата регистрации	дата выдачи
НАЗВАНИЕ ПРОГРАММНОГО СРЕД программного комплекса COSMO	IСТВА: Модуль STAR (Linear Static Analysis) IS/M Explorer, версия 2.8
ЭВМ: IBM – совместимые персона с процессором не ниже Реп	альные компьютеры tium-4
операционная система: Wind	ows 98, Windows 2000, Windows XP
авторы: Фирма SRAC	
разработчик: Фирма SRAC	
заявитель: ОАО ИК «ЗИОМАР»	
	І ПРОГРАММНЫХ СРЕДСТВ
РЕШЕНИЕ СОВЕТА ПО АТТЕСТАЦИИ	
РЕШЕНИЕ СОВЕТА ПО АТТЕСТАЦИР Аттестовать модуль STAR прогр версия 2.8 на срок 10 лет	раммного комплекса COSMOS/M Explorer,
РЕШЕНИЕ СОВЕТА ПО АТТЕСТАЦИИ Аттестовать модуль STAR прогр версия 2.8 на срок 10 лет ПРИЛОЖЕНИЕ на 3 стр.	раммного комплекса COSMOS/M Explorer,

И.Р.Уголева