ОБЪЕМНЫЕ МЕТОДЫ АНАЛИЗА

Это совокупность методов химического количественного анализа, основанных на измерении объемов для установления концентрации (содержания) определяемого вещества.

ТИТРИМЕТРИЧЕСКИЙ МЕТОД АНАЛИЗА

Это метод количественного анализа, основанный на измерении объема раствора с точно известной концентрацией реактива

Данный метод применяется:

- В биохимических измерениях
- В клинических измерениях
- В санитарно-гигиенических измерениях
- В технохимических ихзмерениях
- В химическом анализе

ОСНОВНЫЕ ТЕРМИНЫ

- Титрант
- Стандартный раствор
- Рабочий раствор
- Титрование
- Прямое титрование
- Обратное титрование
- Титрование по замещению
- Точка эквивалентности
- Фиксанал

МЕТОДЫ ТИТРИМЕТРИЧЕСКОГО АНАЛИЗА

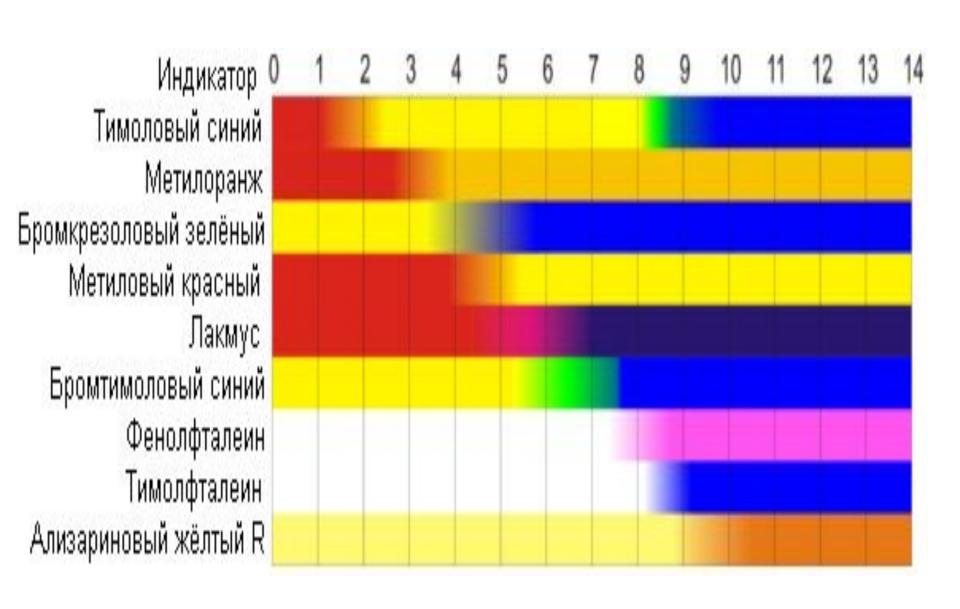
- Методы нейтрализации (ацидометрия, алкалиметрия, галометрия)
- Методы осаждения (аргентометрия, меркурометрия)
- Методы комплексообразования
- Методы окисления-восстановления (перманганатометрия, хроматометрия, иодометрия, броматометрия, ванадометрия и др.)

Задачи:

- 1.Использовать раствор точно известной концентрации (фиксанал)
- 2. Правильно определить точку эквивалентности

Способы фиксации точки эквивалентности

- По собственной окраске ионов определяемого вещества
- По веществу осадителю
- С помощью индикаторов


ИНДИКАТОРЫ

- кислотно-основные,
- окислительно-восстановительные
- комплексонометрические
- адсорбционные
- хемилюминисцентные

• Область значений рН, в которой индикатор изменяет окраску называется интервалом перехода индикатора

ОКРАСКА НЕКОТОРЫХ ИНДИКАТОРОВ В РАЗЛИЧНЫХ СРЕДАХ

Индикаторы –	Окраска индикатора в среде		
	Кислой	Нейтральной	Щелочной
Лакмус	Красный	Фиолетовый	Санай
Метилоранж	Красный	Оранжевый	Желтый
Фенолфталенн			Малиновый

Правила выбора индикатора

- Интервал перехода индикатора болжен совпадать со скачком титрования или хотя бы частично касаться точки эквивалентности
- Индикатора следует добавлять минимальное количество
- Индикаторная ошибка должна быть незначительной
- Чем меньше скачок титрования, тем труднее выбрать индикатор

Кислотно-основные индикаторы

Это вещества, изменяющие свою окраску при изменении водородного показателя среды.

- Метиловый-оранжевый
- Метиловый-красный
- Фенолфталеин
- Ф-ф + тимоловый синий
- Флуоресцентные

Окислительновосстановительные индикаторы

- Это вещества, способные окисляться или восстанавливаться в определенных интервалах значений окислительного потенциала и изменять при этом свою окраску:
- Метиленовый синий
- Дифениламин
- Крахмал

Комплексонометрические индикаторы

- Вещества, образующие с определяемыми ионами окрашенные комплексные соединения:
- Эриохром черныйТ
- Ксиленоловый оранжевый

Адсорбционные индикаторы

- Вещества, в присутствии которых в точке эквивалентности изменяется цвет осадка:
- Эозин
- Флуоресцин

Хемилюминесцентные индикаторы

- Вещества, способные в точке эквивалентности светиться видимым светом:
- Люминол
- Силоксен

Посуда и оборудование в титриметрическом анализе

Основные уравнения титриметрического метода анализа

$$N_1 * V_1 = N_X * V_X$$

Где:

N1 – нормальность титранта

V1 – количество раствора, которое добавили из бюретки для химической реакции

Nx * Vx — характеристика искомого вещества

a

Где: а – навеска анализируемого вещества

Где: П — число молей эквивалента вещества

V — объем раствора в литрах

$$n=m/M_{3KB}$$
 ; $M_{3KB} = M/3$

Где: т – масса вещества

М — молярная масса вещества

Э — эквивалент вещества

$$T = m/V$$

Масса вещества, содержащегося в растворе:

$$T$$
раб раствора/опр в-ву = V раб раст M экв опр в-ва