Элементарные частицы. Античастицы

Школа №625 11 класс Н.М.Турлакова

§114-115. Элементарные частицы. Античастицы.

- План урока
- 1. Презентация «Элементарные частицы».
- 2. Новый материал.
- 3. Закрепление знаний.
- 4. Л.Р. .

Опрос учащихся

- 1. Какие элементарные частицы вы знаете?
- 2. Что означает термин «элементарный»?
- 3. Существуют ли другие элементарные частицы?
- 4. Чем они могут отличаться?
- 5. Как это можно узнать?

Элементарные частиць

Известно, что ...

- •протон и нейтрон взаимно превращаются.
- •существует более 350 элементарных частиц.
- •Они отличаются массой, знаком и величиной заряда, временем жизни.
- •Большинство короткоживущие.
- •Карл Дейвид Андерсон (1932 г.) обнаружил позитрон.
- •Поль Дирак предсказал его существование и процесс аннигиляции. (см. учебник, 1933 г. Подтверждено рпытом).
- •1955 г. Обнаружен антипротон и антинейтрон. Возникла идея антивещества.
- •1969 г. Серпухов. Ядра атомов антигелия.
- •Адроны взаимодействуют посредством ядерных сил (Свойства?)
- •1964 г. Гипотеза о кварках. (См. учебник.)
- •Лептоны не взаимодействуют посредством ядерных сил.

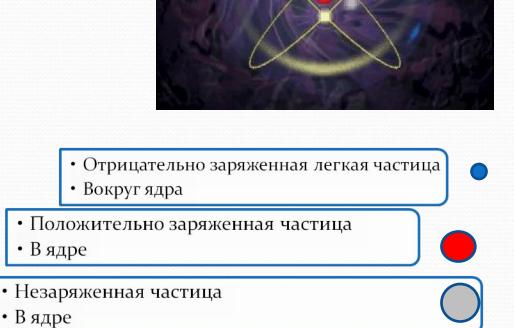
Три этапа

Этап 1. От электрона к позитрону: 1897-1932 г.

Этап 2. От позитрона к кваркам: 1932-1964 г.

Этап 3. От гипотезы о кварках до наших дней:

С 1964 г.


Этап 1. От электрона к позитрону: 1897-1932 г.

В ядре

В ядре

Позитроон

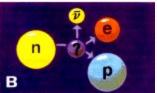
Электрон

Этап 2. От позитрона к

кваркам

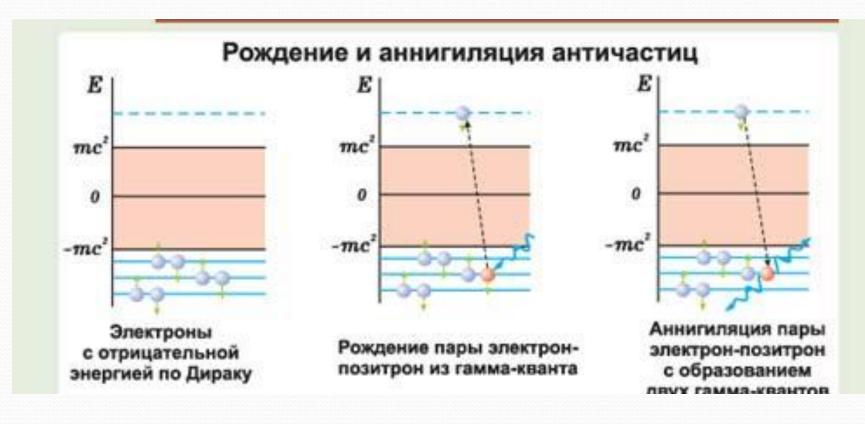
Фундаментальные элементарные частицы


Кварки		Лептоны		
Обозначение	Электрический заряд	Название	Обозначение	Электрический заряд
u	+ 2/3 e	Электрон	е	- 0
c	+2/3 0	Мюон	μ	- 0
t	+ 2/3 e	Таон	τ	-е
d	- <u>1</u> e	Электронное нейтрино	V _e	0
s	- <u>1</u> e	Мюонное нейтрино	V_{μ}	0
b	- <u>1</u> e	Таонное нейтрино	V_{t}	0


Элементарные частицы


Класс частиц	Особенности	Частицы
Адроны	Ядерные силы	протон нейтрон
Кварки	В составе адронов	
Лептоны	Не ядерные силы	электрон

Фундаментальные взаимодействия

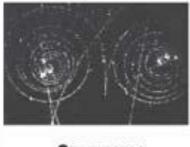


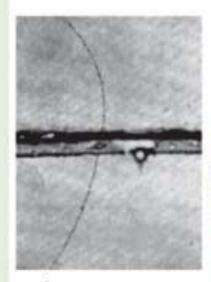
Фундаментальные взаимодействия

	Сильное	Электромагнитное	Слабое	Гравитацион-
Взаимодействующие частицы	кварки, нуклоны	частицы с электрическими зарядами	кварки, лептоны	все частицы
Радиус действия сил	10 ⁻¹⁵ M	œ	10 ⁻¹⁷ M	œ
Относительная сила взаимодействия	1	10°	10°	10 ⁻³⁹
Частицы - носители взаимодействия	глюоны, мезоны	фотоны	промежуточ-	гравитоны (?)

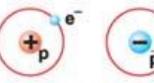
Частицы и античастицы

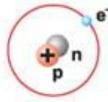
$$\gamma \longrightarrow hv=2mc^2$$


Позитрон


Электрон

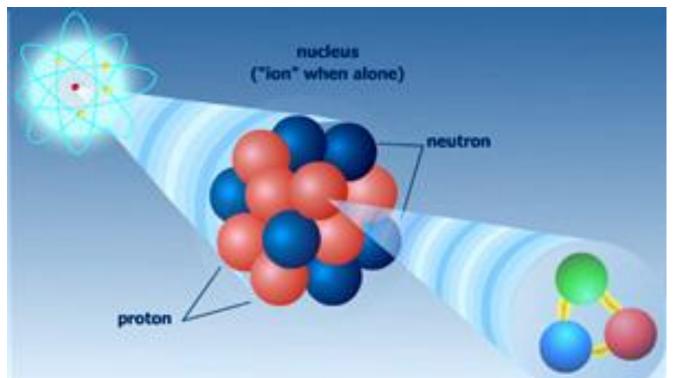
тастицы и античастицы


След пары электрон-позитрон в камере, помещенной в магнитное поле



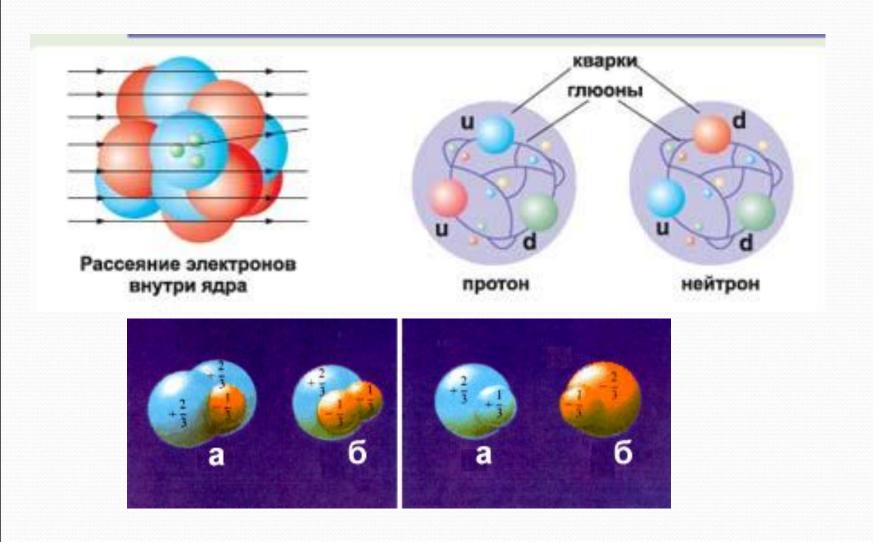
След позитрона в камере Вильсона

Атомы вещества и антивещества

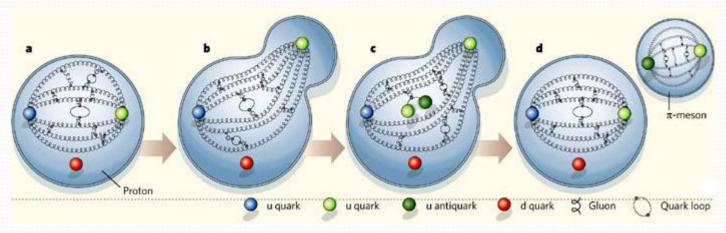


антидейтерий дейтерий

Линейный ускоритель на встречных пучках электронов и позитронов



Этап 3. От гипотезы о кварках до наших дней



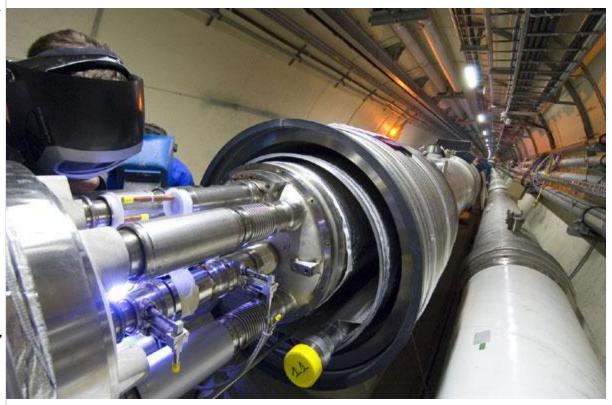
- Почти вся масса любого атома сосредоточена в ядре, которое меньше атома в сто тысяч раз. Ядро сложено из протонов и нейтронов, которые состоят из кварков.
- (Рис. с сайта www.star.bnl.gov)

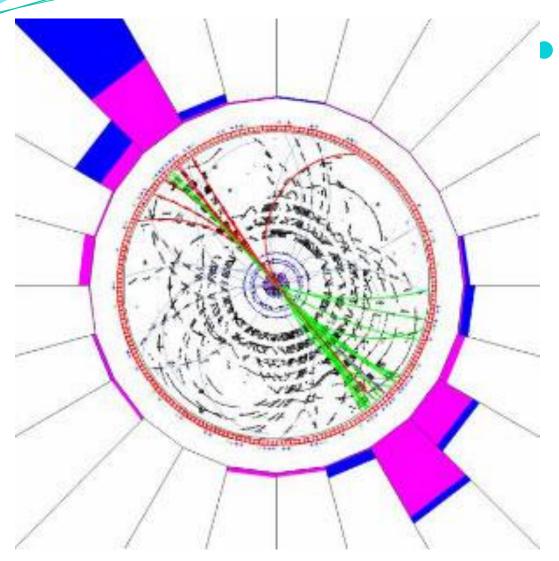
Строение адронов

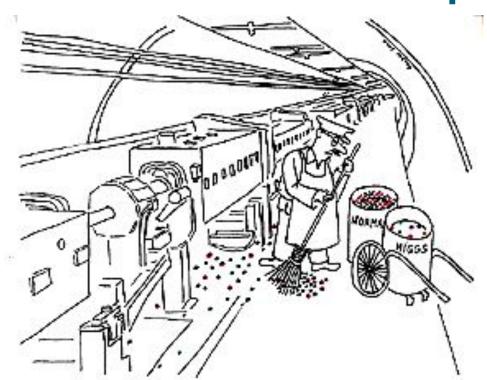
Глюоны

Глюонные силы, связывающие кварки в протоне, не ослабевают при удалении одного кварка от другого. В результате при попытке «вырвать» кварк из протона глюонное поле порождает дополнительную кваркантикварковую пару, и от протона уже отделяется не кварк, а пи-мезон. Пи-мезон уже может улететь сколь угодно далеко от протона, потому что силы между адронами ослабевают с расстоянием. (Рис. с сайта www.nature.com)

- Чем дальше кварки удаляются друг от друга, тем сильнее становятся связывающие их силы
- (рис. с сайта nobelprize.org)


Симметрия элементарных


частиц


 современной теории элементарных частиц концепция симметрии законов относительно некоторых преобразований является ведущей. Симметрия рассматривается как фактор, определяющий существование различных групп и семейств элементарных частиц. Современные гигантские ускорители строятся вовсе не для того, чтобы провести всего лишь какой-то один опыт над элементарными частицами. В современном эксперименте изучается сразу всё, что может произойти с исходными частицами, фактически проводятся сразу десятки и сотни параллельных экспериментов. На этой фотографии показан момент установки одного из тысяч сверхпроводящих магнитов в туннеле коллайдера LHC. (Фото с сайта lhc-machine-outreach.web.cer n.ch)

Так выглядит типичное «интересное» событие в детекторе CDF на Тэватроне. Показан вид детектора с торца. Пучки сталкиваются в направлении, перпендикулярном рисунку, а рожденные частицы разлетаются в разные стороны, отклоняясь в магнитном поле. Чем больше импульс частицы, тем слабее она отклоняется. Гистограмма на краях показывает энерговыделение частиц. (Рис. с сайта www-cdf.fnal.gov)

«Физическая» работа

Этот рисунок иллюстрирует ту порой скучную и даже черную работу, которую должны выполнить физики, чтобы выделить редкие события из всей статистики. На самом деле зачастую вообще невозможно достоверно сказать, родилась или нет интересующая нас частица в каждом конкретном событии. Осмысленную информацию можно извлечь только из всей статистики в целом. (Artwork: CERN. Рис. с сайта www.exploratorium.edu)

Домашнее задание

- Составить рассказ об элементарных частицах.
- Составить вопросы и ответы «Ералаш»