Android Versions

Code name

No codename
No codename
Cupcake
Donut

Eclair

Froyo
Gingerbread
Honeycomb
lce Cream Sandwich
Jelly Bean
KitKat
Lollipop
Marshmallow
Nougat
Nougat

Oreo

Oreo

Pie

Android 10
Android 11

Version numbers ‘API level
1.0 1

1.1 2

1.5 3

1.6 4
2.0-21 5-7
22-22.3 8
2.3-2.3.7 9-10
3.0-3.26 11-13
4.0-4.0.4 14 - 15
41 - 4.31 16 - 18
4.4-4.4.4 19 - 20
5.0 - 511 21- 22
6.0 - 6.0.1 23

7.0 24
/71.0-71.2 25

8.0 26

8.1 27

9.0 28
10.0 29

11 30

https://en.wikipedia.org/wiki/Android_version_history

Release date
September 23, 2008
February 9, 2009
April 27, 2009
September 15, 2009
October 26, 2009
May 20, 2010
December 6, 2010
February 22, 2011
October 18, 2011
July 9, 2012
October 31, 2013
November 12, 2014
October 5, 2015
August 22, 2016
October 4, 2016
August 21, 2017
December 5, 2017
August 6, 2018
September 3, 2019
September 8, 2020

Android Architecture

System Apps
Dialer Calendar Camera

Java APl Framework

Managers
Content Providers
Activity Location Package Notification

View System Resource Telephony Window

Native C/C++ Libraries

Webkit OpenMAX AL Android Runtime (ART)

Media Framework OpenGL ES e Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel

Drivers

Binder (IPC) Display

Bluetooth Camera

Shared Memory

Power Management

https://developer.android.com/quide/platform

The Android framework includes the following key services:
« Activity Manager — Controls all aspects of the application lifecycle and activity stack.
« Content Providers — Allows applications to publish and share data with other applications.

« Resource Manager — Provides access to non-code embedded resources such as strings, color settings and user
interface layouts.

« Notifications Manager — Allows applications to display alerts and notifications to the user.
« View System - An extensible set of views used to create application user interfaces.

« Package Manager - The system by which applications are able to find out information about other applications
currently installed on the device.

 Telephony Manager - Provides information to the application about the telephony services available on the
device such as status and subscriber information.

 Location Manager - Provides access to the location services allowing an application to receive updates about
location changes.

App components

App components are the essential building blocks of an Android app. Each component is an entry point through which
the system or a user can enter your app. Some components depend on others.

There are four different types of app components:
e Activities
e Services
e Broadcast receivers

e Content providers

Each type serves a distinct purpose and has a distinct lifecycle that defines how the component is created and
destroyed. The following sections describe the four types of app components.

https://developer.android.com/qguide/components/fundamentals

Activities

An activity is the entry point for interacting with the user. It represents a single screen with a user interface. For
example, an email app might have one activity that shows a list of new emails, another activity to compose an
email, and another activity for reading emails. Although the activities work together to form a cohesive user
experience in the email app, each one is independent of the others. As such, a different app can start any one of
these activities if the email app allows it. For example, a camera app can start the activity in the email app that
composes new mail to allow the user to share a picture. An activity facilitates the following key interactions
between system and app:

o Keeping track of what the user currently cares about (what is on screen) to ensure that the system keeps
running the process that is hosting the activity.

e Knowing that previously used processes contain things the user may return to (stopped activities), and thus
more highly prioritize keeping those processes around.

e Helping the app handle having its process killed so the user can return to activities with their previous state
restored.

e Providing a way for apps to implement user flows between each other, and for the system to coordinate
these flows. (The most classic example here being share.)

You implement an activity as a subclass of the Activity class. For more information about the Activity class,
see the Activities developer guide.

Services

A service is a general-purpose entry point for keeping an app running in the background for all kinds of reasons. It
is a component that runs in the background to perform long-running operations or to perform work for remote
processes. A service does not provide a user interface. For example, a service might play music in the background
while the user is in a different app, or it might fetch data over the network without blocking user interaction with an
activity. Another component, such as an activity, can start the service and let it run or bind to it in order to interact
with it. There are actually two very distinct semantics services tell the system about how to manage an app:
Started services tell the system to keep them running until their work is completed. This could be to sync some
data in the background or play music even after the user leaves the app. Syncing data in the background or playing
music also represent two different types of started services that modify how the system handles them:

e Music playback is something the user is directly aware of, so the app tells the system this by saying it wants
to be foreground with a notification to tell the user about it; in this case the system knows that it should try
really hard to keep that service's process running, because the user will be unhappy if it goes away.

o A regular background service is not something the user is directly aware as running, so the system has more
freedom in managing its process. It may allow it to be killed (and then restarting the service sometime later)
if it needs RAM for things that are of more immediate concern to the user.

Broadcast receivers

A broadcast receiver is a component that enables the system to deliver events to the app outside of a reqgular user
flow, allowing the app to respond to system-wide broadcast announcements. Because broadcast receivers are
another well-defined entry into the app, the system can deliver broadcasts even to apps that aren't currently
running. So, for example, an app can schedule an alarm to post a notification to tell the user about an upcoming
event... and by delivering that alarm to a BroadcastReceiver of the app, there is no need for the app to remain
running until the alarm goes off. Many broadcasts originate from the system—for example, a broadcast
announcing that the screen has turned off, the battery is low, or a picture was captured. Apps can also initiate
broadcasts—for example, to let other apps know that some data has been downloaded to the device and is
available for them to use. Although broadcast receivers don't display a user interface, they may create a status bar
notification to alert the user when a broadcast event occurs. More commonly, though, a broadcast receiver is just a
gateway to other components and is intended to do a very minimal amount of work. For instance, it might schedule
a JobService to perform some work based on the event with JobScheduler

A broadcast receiver is implemented as a subclass of BroadcastReceiver and each broadcast is delivered as an
Intent object. For more information, see the BroadcastReceiver class.

Content providers

A content provider manages a shared set of app data that you can store in the file system, in a SQLite database, on
the web, or on any other persistent storage location that your app can access. Through the content provider, other
apps can query or modify the data if the content provider allows it. For example, the Android system provides a
content provider that manages the user’s contact information. As such, any app with the proper permissions can
query the content provider, such as ContactsContract.Data , to read and write information about a particular
person. It is tempting to think of a content provider as an abstraction on a database, because there is a lot of API
and support built in to them for that common case. However, they have a different core purpose from a system-
design perspective. To the system, a content provider is an entry point into an app for publishing named data
items, identified by a URI scheme. Thus an app can decide how it wants to map the data it contains to a URI
namespace, handing out those URIs to other entities which can in turn use them to access the data. There are a
few particular things this allows the system to do in managing an app:

e Assigning a URI doesn't require that the app remain running, so URIs can persist after their owning apps have
exited. The system only needs to make sure that an owning app is still running when it has to retrieve the
app's data from the corresponding URI.

e These URIs also provide an important fine-grained security model. For example, an app can place the URI for
an image it has on the clipboard, but leave its content provider locked up so that other apps cannot freely
access it. When a second app attempts to access that URI on the clipboard, the system can allow that app to
access the data via a temporary URI permission grant so that it is allowed to access the data only behind that
URI, but nothing else in the second app.

Content providers are also useful for reading and writing data that is private to your app and not shared.

Activity Lifecycle

| Activity ,
. launched /
> antameta() Method Description
v
onStartf) = «—— onRestart() onCreate called when activity is first created.
A
User navigates v onStart called when activity is becoming visible to the
10 the activity onResume() - user
2 Aphpeocass \ (Stk onResume called when activity will start interacting with the
\ running /
N/ - - user.
Another activity comes
into the foreground e onPause called when activity is not visible to the user.
| | i to the activity
AP edmomoy | ——| onPause) ——— . -
Tpeac'l'ww's onStop called when activity is no longer visible to the
no longer visible (i navkiiea user.
* to the activity
onStop() J onRestart called after your activity is stopped, prior to
e L start.
The activity is finishing or
being destroyed by the system . . .
i onDestroy called before the activity is destroyed.
onDestroy()
/’#‘\

[Activity |

K shut down)

https://developer.android.com/reference/android/app/Activity

Log Methods

Log provides methods that correspond to different level of priority (importance) of the messages being

recorded. From low to high priority:

Log.v() : VERBOSE output. This is the most detailed, for everyday messages. This is often the go-
to, default level for logging.

Ideally, Log.v() calls should only be compiled into an application during development, and removed
for production versions.

Log.d() : DEBUG output. This is intended for lower-level, less detailed messages (but still code-
level, that is referring to specific programming messages).

These messages can be compiled into the code but are removed at runtime in production builds
through Gradle.

Log.i() : INFO output. This is intended for “high-level” information, such at the user level (rather
than specifics about code)

Log.w() : WARN output. For warnings
Log.e() : ERROR output. For errors

Also if you look at the API... Log.wtf() |

Resources Types

res/drawable/ _ contains graphics (PNG, JPEG, etc)
res/layout/ : contains Ul XML layout files

res/mipmap/ . conatins launcher icon files in different resolutions
res/values/ . contains XML definitions for general constants

o /strings : short string constants (e.g., labels)

o /colors : color constants

o [styles :constants for style and theme details

o /dimen : dimensional constants (like default margins); not created by default in Android Studio
2.3+.

<?xml version="1.9" encoding="utf-8"2>
{resources>
<string name="app_name">Mon Application</string>

</resources>

Resources Tags

Path’s Tag's
res/values/strings.xml <plurals>
res/values/strings.xml <string>
res/values/strings.xml <string-array>
res/values/arrays.xml <string-array>
res/values/bools.xml <bool>
res/values/colors.xml <color>
res/values/styles.xml <style>
res/values/themes.xml <style>
res/values/dimens.xml <dimen>
res/values/ids.xml <item>
res/values/integers.xml <integer>
res/values/integers.xml <integer-array>
res/color/ <selector>
res/menu/ <menu>
res/xml/

res/drawable/

res/drawable/ <animation-list>
res/animator/ <set>, <objectAnimator>, <valueAnimator>
res/anim/ <set>, <alpha>, <rotate>, <scale>, <translate>
res/raw/

res/layout/

Layouts

As mentioned above, a Layout is a grouping of Views (specifically, a ViewGroup). A Layout acts as a
container for other Views, to help organize things. Layouts are all subclasses of ViewGroup , SO yOu can

use its inheritance documentation to see a (mostly) complete list of options. though many of the listed
classes are deprecated in favor of later, more generic/powerful options.

An Android layout is a class that handles arranging the way its children appear on the screen. Anything
that is a View (or inherits from View) can be a child of a layout. All of the layouts inherit

from ViewGroup (which inherits from View) so you can nest layouts. You could also create your own

custom layout by making a class that inherits from ViewGroup.

View Properties

Before we get into how to group Views, let's focus on the individual, basic view classes. As an example,
consider the activity_main layout in the lecture code. This layout contains two individual view

elements (inside a Layout). @ TextView anda Button .

All View have properties which define the state of the View. Properties are usually defined within the
resource XML as element aftributes. Some examples of these property attributes are described below.

« android:id specifies a unique identifier for the View. This identifier needs to be unique within the

layout, though ideally is unique within the entire app (for clarity).

Identifiers must be legal Java variable names (because they are turned into a variable name in the
R class), and by convention are named in lower_case format.

o Style tip: it is useful to prefix each View's id with its type (e.g.. btn , txt . edt). This helps
with making the code self-documenting.

You should give each interactive view a unique id, which will allow its state to automatically be
saved as a Bundle when the Activity is destroyed. See here for details.

layout_width and layout_height

e android:layout_width and android:layout_height are used to specify the View's size on the
screen (see ViewGroup.LayoutParams for documentation). These values can be a specific value
(e.g., 12dp), but more commonly is one of two special values:

o wrap_content , meaning the dimension should be as large as the content requires, plus padding.

o match_parent ., meaning the dimension should be as large as the parent (container) element,
minus padding. This value was renamed from fill_parent (Which has now been deprecated).

Dimension Units

Android utilizes the following dimensions or units:

o]

dp is a “density-independent pixel”. On a 160-dpi (dots-per-inch) screen, 1dp equals 1px
(pixel). But as dpi increases, the number of pixels per dp increases. These values should
be used instead of px , as it allows dimensions to work independent of the hardware’s dpi
(which is highly variable).

px 1S an actual screen pixel. DO NOT USE THIS (use dp instead!)

sp is a “scale-independent pixel”. This value is like dp , but is scale by the system’s font
preference (e.g., if the user has selected that the device should display in a larger font, 1sp
will cover more dp). You should always use sp for text dimensions, in order o support
user preferences and accessibility.

pt is 1/72 of an inch of the physical screen. Similar units mm and in are available. Not
recommended for use.

Dimension Units

1 Inch

300 dpi

View Classes

View

1
[
AnalogClock ImageView

ViewGroup
[
- RelativeLayout GridLayout
() (]
FrameLayout AbsolutelLayout LinearLayout
T FAY
CalendarView DatePicker WebView NumberPicker RadioGroup
| 1
[[]
CompoundButton ScrollView HorizontalScrollView TimePicker Sonmh\iow TabWidget
T X
(]) | ([)
CheckBox RadioButton Switch ToggleButton TableLayout TableRow ZoomControls

Relativelayout

RelativeLayout is a view group that displays child views in
relative positions. The position of each view can be specified
as relative to sibling elements (such as to the left-of or below
another view) or in positions relative to the

parent RelativeLayout area (such as aligned to the bottom,
left or center).

RelativeLayout Properties

android:layout_above android:layout_alignBottom
android:layout_below android:layout_alignLeft
android:layout_tolLeftOf android:layout_alignRight
android:layout_toRightOf android:layout_alignStart
android:layout_toStartOf android:layout_alignEnd
android:layout_toEndOf android:layout_alignTop

android:layout_alignBaseline

android:layout_alignParentBottom
android:layout_alignParentRight
android:layout_alignParentLeft
android:layout_alignParentStart
android:layout_alignParentEnd
android:layout_alignParentTop
android:layout_centerinParent
android:layout_centerHorizontal
android:layout_centerVertical

LinearLayout

LinearLayout is a ViewGroup that arranges the

LinearLagout LinearLayout child View(s) in a single direction, either
vertically or horizontally.
NEW BUTTON
- NEWBUTTON | NEW BUTTON
L}, . .
\ 1 | <!-- Horizontal LinearLayout (Default) -->
| NEW BUTTON 2 <LinearLayvout
| ~
5
| - .
' - android:orientation="horizontal">
: 5
' R T St Sebtaiaian issaialnn s - 6
: Horiz¢ntal LinegrLayout /' <LinearLayout>
: 8
; 0
| Nt Tt " 10 | <!-- Vertical LinearLayout -->
Ly SR e 11 <LinearLavout
v 12
13 android:-orientation="vertical">
15
16 </LinearLavout>

LinearLayout Properties

android:orientation = "vertical" | "horizontal"

android:weightSum = "10“

android:layout_weight = "1"
android:layout_gravity = "top" |"bottom" | "left" | "right" |

"center_vertical"|"center_horizontal"|"center" |
"fill_vertical"|"fill_horizontal" | "fill" |
"clip_vertical"|"clip_horizontal" |

"start" |"end"

Framelayout

Palette Q¢ - € "\:\, O Pixel v 29+ (@) AppTheme~ & Default (en-us) ~
Common Button @ b 0dp, Jx I
Trark ImageButton
Bt = ChipGroup
' Chip
Widgets CheckBox
Layouts (#) RadioGroup
Container RadioButton
PP I ToggleButton
Component Tree o —

ConstraintLayout
Framelayout

Framelayout is a simple layout. It can
contain one or more child View(s), and
they can overlap each other. Therefore,
the android:layout_gravity attribute is
used to locate the child View(s).

layout_gravity
= “left|top”

FramelLayout

android:layout_gravity

® & 0OPixelv #29v @ AppTheme v

© o1

layout_gravity
= “bottom|right”

BUTTON

& Default (en-us) ~

A

- gra

9 button2

» foregroundGra...
» gravity
» layout_gravity

F
M center vertical|center_F

=

TableLayout

NEW BUTTON NEW BUTTON

'I'____T____

)
!
!
i
|
i
|
!
!
!
!
!
i

[

TableLayout

TableLayout arranges the View(s) in table format.
Specifically, TableLayout is a ViewGroup containing one
or more TableRow(s). Each TableRow is a row in the table
containing cells. Child View(s) can be placed in one cell or
in a merged cell from adjacent cells of a row. Unlike tables
in HTML, you cannot merge consecutive cells in the one
column.

TableRow

GridLayout

GridLayout uses a grid of infinitely-thin lines to
separate its drawing area into: rows, columns, and
cells. It supports both row and column spanning,
this means it is possible to merge adjacent cells
into a large cell (a rectangle) to contain a View.

Gravity and Layout_Gravity

ayout_gravity =
B S8 ° @ 2
. 3 . ; ‘
Android Gravity Layout Gravity BUTTON | LONGBUTTON | BUTTON LONG BUTTON
4l BUTTON |
CENTER |
BUTTON |
CENTER_HORIZONTAL |
CENTER_VERTICAL
layout_gravity =
BUTTON ‘ BUTTON
|
CENTER LONG BUTTON LONG BUTTON ’
CENTER_HODRIZONTAI
BUTTON BUTTON

CENTER_VERTICAL

RIGHT

https://learntodroid.com/what-is-the-difference-between-gravity-and-layout_gravity-in-android/

Padding

Q @ O Pixel2v =29+ (@ AppTheme v » A || Q padding
@ W (0dp | Jx # 18 |[=m I —| <unnamed>
clipToPadding &

dividerPadding

m & = ¥ padding 22227
BUTTON padding
paddinglLeft
LONG BUTTON paddingTop
® @® paddingRight
it paddingBottom

0

Y [Pixel2 v

AW
= %y et

= 29 v (© AppTheme v

BUTTON T LONGBUTTON BUTTON

Margins

>

Y

1~ margin

&9 button1

“ layout_margin
layout_margin
layout_marginLeft
layout_marginTop
layout_marginRight
layout_marginBott...

[

?

‘r

2528

l' l' C’ .

¢SC

“>Hello World!<>
4 0 40

iso

Example

minc s+ lc="hé+
. i1 e LUVLOD=- -
ol o e e Y 2ermne rd
Qi UVi0 ;d,—’sl‘.
“-rnArsat A0 ~ 1
ail UilU . 1ayoulL

tonls'context="
{<TextView
android:1la

nnArant1dnaAd
gl Vil . oall
.
=mArmss N arTa
Gl e aul
.
R [P e |
QLU Vil . au
- dArsras 23 o o=
anarolda: pad
s
s e ol e on &=
aiiuai Vil .,. LC
At A av
aiilil ULl LA
- At A hars
Qi AN « VUL
= 1 avand
appy.i1ayoul
- T - -~ -
— ™m* |
(") .-C’, WL

v

. ~ 0" A -~
~Trmo = e P 4 ™
QlNgLeTT= |vap

- 'S " AN "n
A1 nolRioht = A4
ULIIERLENIL= &OoUp

. - -

AT nmnoRAat+rrm="A0AR"
C1lNEoottom=" 0ouvaGph

ConstraintLayout

ConstraintLayout — Introduced in Android 7, use of this layout manager is recommended for most layout
requirements. ConstraintLayout allows the positioning and behavior of the views in a layout to be defined
by simple constraint settings assigned to each child view. The flexibility of this layout allows complex layouts
to be quickly and easily created without the necessity to nest other layout types inside each other, resulting
in improved layout performance. ConstraintLayout is also tightly integrated into the Android Studio Layout

Editor tool. Unless otherwise stated, this is the layout of choice for the majority of examples in this book.

ConstraintLayout

Vi b WN

0 00 o

19
11
12
13
14
15
16
17
138
19
20
21
22

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent”

android: layout_height="match_parent"
tools:context=".MainActivity">

<TextView
android: layout_width="0@dp"
android: layout_height="0dp"
android:text="Hello World!"
android:textSize="38sp"
android:background="#eBeBeB"
app:layout_constraintleft_tolLeftOf="parent”
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintBottom toBottomOf="parent™
/>

</androidx.constraintlayout.widget.ConstraintLayout>

ConstraintLayout Properties

app:layout_constraintDimensionRatio="1:0.5"
app:layout_constraintHorizontal bias="0.5"
app:layout_constraintVertical _bias="0.5"

app:layout_constraintWidth_default="percent"
app:layout_constraintWidth_percent="0.5"
app:layout_constraintHeight_default="percent"
app:layout_constraintHeight_percent="0.5"

app:layout_constraintHorizontal _chainStyle = "spread" |"spread_inside"|"packed"
app:layout_constraintHorizontal weight = "1"

app:layout_constraintVertical chainStyle = "spread" |"spread_inside"|"packed"
app:layout_constraintVertical _weight ="1"

ConstraintLayout Properties2
layout_constraintLeft_tolLeftOf

layout_constraintLeft_toRightOf
layout_constraintRight_tolLeftOf
layout_constraintRight_toRightOf
layout_constraintTop toTopOf
layout_constraintTop_toBottomOf
layout_constraintBottom_toBottomOf
layout_constraintBottom_toTopOf
layout_constraintBaseline_toBaselineOf
layout_constraintStart_toEndOf
layout_constraintStart_toStartOf
layout_constraintEnd_toStartOf

layout_constraintEnd_toEndOf

W o d o, s W

1
i1
12
13
14
15
16
17

=
o

1%
20
21
22
23
24
25
26
27
28
29

o

include

<?xml -version="1.0"--encoding="utf-8"?2>
<androidx.constraintlayout.widget.ConstraintLayout

‘xmlns:android="http://schemas.android.com/apk/res/android"

‘xmlns:app="http://schemas.android.com/apk/res-auto"
‘¥xmlns:tools="http://schemas.android.com/tools"

randroid:layout width="match parent"
-android:layout height="match parent"
-android:padding="16dp"

- -tools:context=".MainActivity">

-<include

-+ - -android:id="@+id/textView"
«+ -+ -layout="@layout/text panel"
«++ - -android:layout_width="wrap content"
«++ - -android:layout _height="wrap_ content"
+++++ - -app:layout_constraintlLeft tolLeftOf="parent"
crec - -appilayout constraintTop toTopOf="parent"
+++-+---app:layout_constraintBottom toTopOf="@+id/button"
SRS NN 53

-<include
«+++i - -android:id="@+id/button”
----f---layout="@layout/button_panel"
----}---android:layout_width="wrap_gontent"
©++ - -android:layout_height="wrap_ content"
----¥-~-app:layout_constraintLeft_toLeftOf="parent"
~~--¥~~-app:layout_constraintTop_toBottomOf="@+id/textView"
e f>

~-</androidx.constraintlayout.widget.ConstraintLayout>

ConstraintLayout ChainStyle

« Spread Chain - The widgets contained within the chain are distributed evenly across the available space. This
is the default behavior for chains.

Button Button Button

« Spread Inside Chain - The widgets contained within the chain are spread evenly between the chain head and
the last widget in the chain. The head and last widgets are not included in the distribution of spacing.

Button Button Button

» Packed Chain - The widgets that make up the chain are packed together without any spacing. A bias may be
applied to control the horizontal or vertical positioning of the chain in relation to the parent container.

Button Button Button

Android ...

Android ...

