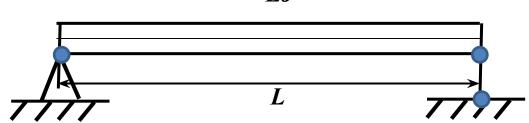

Семинар 15. Изгибные колебания стержня (самостоятельная)

Определить собственные частоты и формы изгибных колебаний стержня

1. Записать уравнение в частных производных.

$$\frac{\partial^4 w}{\partial x^4} + \frac{\rho F}{EJ} \frac{\partial^2 w}{\partial t^2} = 0 \quad (10.2)$$

2. Записать решение, разделяя переменные по времени и координате


$$w(x,t) = W(x)\sin \omega t \quad (10.3)$$

3. Подстановкой привести к обыкновенному дифференциальному уравнению относительно форм колебаний

$$W^{IV} - \beta^4 W = 0$$
 (10.4)

4. Записать решение для форм колебаний

$$W(x) = C_1 \sin \beta x + C_2 \cos \beta x + C_3 \sinh \beta x + C_4 \cosh \beta x \quad (10.5)$$

5. Записать граничные условия относительно форм колебаний

$$w(0) = 0$$
, $EJ\frac{\partial^2 w}{\partial x^2}(0) = 0$, $w(L) = 0$, $EJ\frac{\partial^2 w}{\partial x^2}(L) = 0$

6. Составить условие ненулевого решения для определения собственных частот

$$W(x) = C_1 \sin \beta x + C_2 \cos \beta x + C_3 sh\beta x + C_4 ch\beta x$$

$$W''(x) = -C_1 \beta^2 \sin \beta x - C_2 \beta^2 \cos \beta x + C_3 \beta^2 \sinh \beta x + C_4 \beta^2 \cosh \beta x$$

6. Составить условие ненулевого решения для определения собственных частот

$$W(x) = C_1 \sin \beta x + C_2 \cos \beta x + C_3 sh\beta x + C_4 ch\beta x$$

$$W''(x) = -C_1 \beta^2 \sin \beta x - C_2 \beta^2 \cos \beta x + C_3 \beta^2 sh\beta x + C_4 \beta^2 ch\beta x$$

$$W(0) = 0 + C_2 * 1 + 0 + C_4 * 1 = 0$$

$$W''(0) = 0 - C_2 * 1 + 0 + C_4 * 1 = 0$$

$$C_2 + C_4 = 0$$

 $-C_2 + C_4 = 0$ $C_2 = 0$ $C_4 = 0$

$$W(x) = C_1 \sin \beta x + C_3 sh\beta x$$

 $W''(x) = -C_1 \beta^2 \sin \beta x + C_3 \beta^2 sh\beta x$ 7. Записать выражение для определения собственных частот

$$W(L) = C_1 \sin \beta L + C_3 sh\beta L = 0$$

$$W''(L) = -C_1 \sin \beta L + C_3 sh\beta L = 0$$

7. Записать выражение для определения собственных частот

$$C_1 \sin \beta L + C_3 sh\beta L = 0$$
$$-C_1 \sin \beta L + C_3 sh\beta L = 0$$

Преобразования

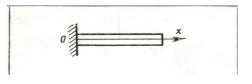
$$C_1 \sin \beta L + C_3 sh\beta L = 0$$
+
$$-C_1 \sin \beta L + C_3 sh\beta L = 0$$

$$C_1 \sin \beta L + C_3 \sinh \beta L = 0$$

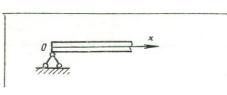
$$C_3 = 0$$

 $-C_1 \sin \beta L + C_3 sh\beta L = 0$

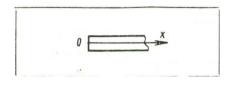
$$\beta L = n\pi$$
 $n = 1, 2, \dots$ $\beta^4 = \frac{\rho F \omega^2}{EJ}$ $\omega_n = \frac{n^2 \pi^2}{L^2} \sqrt{\frac{EJ}{\rho F}}$


 $\sin \beta L = 0$

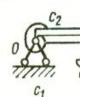
8. Записать выражение для собственных форм колебаний


$$W(x) = C_1 \sin \beta x$$

Основные типы краевых условий для изгибных колебаний стержней


1.
$$w = 0$$
, $\frac{\partial w}{\partial x} = 0$

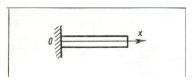
2.
$$w = 0$$
, $EJ\frac{\partial^2 w}{\partial x^2} = 0$



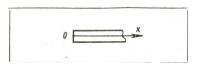
3.
$$\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) = 0, \quad EJ \frac{\partial^2 w}{\partial x^2} = 0$$

$$4. \frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) - c_1 w = 0, \quad EJ \frac{\partial^2 w}{\partial x^2} = 0$$

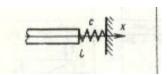
5.
$$w = 0$$
, $EJ \frac{\partial^2 w}{\partial x^2} - c_2 \frac{\partial w}{\partial x} = 0$

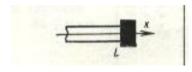

6. Основные типы краевых условий для изгибных колебаний стержней

Вид закрепления	Схема	Условия при х = 0
Заделка	0	$w=0, \ \frac{\partial w}{\partial x}=0$
Свободное опирание	*	$\omega = 0$, $E J \frac{\partial^2 \omega}{\partial x^2} = 0$
Свободный конец	0 - 3	$\left \frac{\partial}{\partial x} \left\langle EJ \frac{\partial^2 w}{\partial x^2} \right\rangle = 0, EJ \frac{\partial^2 w}{\partial x^2} = 0$
Плавающая заделка	0 1111	$\frac{\partial}{\partial x} \left(E J \frac{\partial^2 w}{\partial x^2} \right) = 0, \frac{\partial w}{\partial x} = 0$
	**************************************	$ \frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) - c_1 w = 0, $ $ \frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) + c_1 w = 0, $ $ (\text{при } x = l) $
пругое закреп-		$E \int \frac{\partial^3 w}{\partial x^2} - c_2 \frac{\partial w}{\partial x} = 0.$ $w = 0, E \int \frac{\partial^3 w}{\partial x^2} + c_2 \frac{\partial w}{\partial x} = 0$ $(\pi p_H \ x = l)$
initis oxide de	O TO	$\frac{\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) - c_1 w = 0,}{\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) + c_1 w = 0,} EJ \frac{\partial^2 w}{\partial x^2} = 0$ $(\text{при } x = l)$

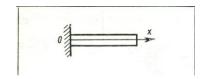

Вид закрепления	Схема	Условия при $x=0$
	× × × × × × × × × × × × × × × × × × ×	$EJ \frac{\partial^z w}{\partial x^2} - c_z \frac{\partial w}{\partial x} = 0,$ $\frac{\partial}{\partial x} \left(EJ \frac{\partial^z w}{\partial x^2} \right) = 0,$ $EJ \frac{\partial^z w}{\partial x^2} + c_z \frac{\partial w}{\partial x} = 0$ (npu $x = l$)
Упругое закрепление		$\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) - \varepsilon_1 w = 0,$ $EJ \frac{\partial^2 w}{\partial x^2} - \varepsilon_2 \frac{\partial w}{\partial x} = 0$ $\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) + \varepsilon_1 w = 0,$ $(\text{при } x = l)$ $EJ \frac{\partial^2 w}{\partial x^2} + \varepsilon_2 \frac{\partial w}{\partial x} = 0$ $(\text{при } x = l)$
Сосредоточенный инерционный эле- мент на конце	x x x x x x x x x x x x x x x x x x x	$\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) = m \frac{\partial^2 w}{\partial t^2}$ $EJ \frac{\partial^2 w}{\partial x^2} = I \frac{\partial^2 w}{\partial x \partial t^2}$ $\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) = -m \frac{\partial^2 w}{\partial t^2}$ $(\text{npa } x = I)$ $EJ \frac{\partial^2 w}{\partial x^2} = -I \frac{\partial^2 w}{\partial x \partial t^2}$ $(\text{npa } x = I)$

Основные типы краевых условий для продольных колебаний стержней

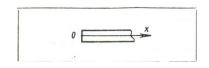

1.
$$u = 0$$
 $npu x = 0$


$$2. EF\left(\frac{\partial u}{\partial x}\right) = 0 \quad npu \ x = 0$$

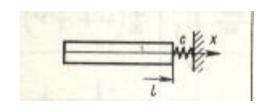
$$4.2. EF\left(\frac{\partial u}{\partial x}\right) + cu = 0 \quad npu \ x = L$$

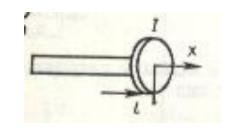


5.2.
$$EF\left(\frac{\partial u}{\partial x}\right) = -M\frac{\partial^2 u}{\partial t^2}$$
 $npu \ x = L$



Основные типы краевых условий для крутильных колебаний стержней


1.
$$\theta = 0$$
 $npu x = 0$


2.
$$GJ_{\kappa}\left(\frac{\partial\theta}{\partial x}\right) = 0$$
 $npu \ x = 0$

4.2.
$$GJ_{\kappa}\left(\frac{\partial\theta}{\partial x}\right) + c\theta = 0$$
 $npu \ x = L$

5.2.
$$GJ_{\kappa}\left(\frac{\partial\theta}{\partial x}\right) = -I_{\kappa}\frac{\partial^{2}\theta}{\partial t^{2}}$$
 $npu \ x = L$

