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Presentation overview

a) SOLID principles

b) KISS, DRY, YAGNI principles

c) Code readability

© Accenture. By Maksims Ahadovs & Dmitri Kartashov-Gawski.



SOLID principles

a) Defined by Robert C. Martin (not all elaborated by him)

b) Acronym by Michael Feathers

c) Maintainability, extensibility, robustness 
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Single Responsibility Principle

SRP: A class should have only one reason to change.

Advantages?

a) Small and simple to understand classes

b) Easy to test

c) Easy to switch implementations
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Open Closed Principle

OCP: A class should be open for extension, but closed for modification.

Advantages?

a) Minimize risk of introducing bugs into existing functionality
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Liskov Substitution Principle

LSP: Let q(x) be a property provable about objects x of type T. Then q(y) 
should be true for objects y of type S where S is a subtype of T.

LSP: Derived class should not break client code when used in place of 
base class. 
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Liskov Substitution Principle

a) Preconditions cannot be strengthened in a subtype

b) Postconditions cannot be weakened in a subtype

c) Invariants of the supertype must be preserved in a subtype
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Liskov Substitution Principle

a) Contravariance of method arguments in the subtype

b) Covariance of return types in the subtype
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Liskov Substitution Principle (contravariance)
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Liskov Substitution Principle (covariance)
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Liskov Substitution Principle

a) No new exceptions should be thrown by methods of the subtype
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Liskov Substitution Principle

Advantages?

a) Imagine big and complex system like Windows OS. You extend a 
class which is used in tens of other classes. By adhering to LSP risk 
of breaking whole system is minimized.
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Interface Segregation Principle

ISP: Client should not be forced to depend on methods it does not use.

Advantages?

a) Implementer is not pushed to implement methods that it doesn’t 
need

b) Client has no temptation to use more than it needs
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Dependency Inversion Principle

DIP: High-level modules should not depend on low-level modules. Both 
should depend on abstractions.

Abstractions should not depend on details. Details should depend on 
abstractions.

Advantages?

a) Easy to switch implementations
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Other principles

a) KISS: Keep It Simple, Stupid

b) DRY: Don’t Repeat Yourself

c) YAGNI: You Ain’t Gonna Need It
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Code readability

a) Clear names

b) Avoid comments

c) Formatting
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Tools

a) StyleCop

b) JetBrains R#
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Summary
Keep Your POOP SOLID and DRY
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References

a) SOLID in C# by Chris Klug (TechEd North America 2014) 

b) Adaptive Code via C#: Agile coding with design patterns and SOLID 
principles by Gary McLean Hall book
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Code examples

a) https://github.com/maksims-ahadovs/SOLID
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Questions?
I hope no =(
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